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Introduction



Support Vector Machine

• The Support Vector Machine is a classification algorithm developed

based on a geometric intuition of finding large margin

• SVM has demonstrated successful results in binary classification

problems

• Several efforts have been proposed to bring the success of SVM in

binary classification problems into multi-class classification problems

• We will study different approaches in formulating multi-class SVM in

both theoretical properties (Fisher consistency) and empirical

performance of the models

Introduction 1



Support Vector Machine

• The Support Vector Machine is a classification algorithm developed

based on a geometric intuition of finding large margin

• SVM has demonstrated successful results in binary classification

problems

• Several efforts have been proposed to bring the success of SVM in

binary classification problems into multi-class classification problems

• We will study different approaches in formulating multi-class SVM in

both theoretical properties (Fisher consistency) and empirical

performance of the models

Introduction 1



Support Vector Machine

• The Support Vector Machine is a classification algorithm developed

based on a geometric intuition of finding large margin

• SVM has demonstrated successful results in binary classification

problems

• Several efforts have been proposed to bring the success of SVM in

binary classification problems into multi-class classification problems

• We will study different approaches in formulating multi-class SVM in

both theoretical properties (Fisher consistency) and empirical

performance of the models

Introduction 1



Support Vector Machine

• The Support Vector Machine is a classification algorithm developed

based on a geometric intuition of finding large margin

• SVM has demonstrated successful results in binary classification

problems

• Several efforts have been proposed to bring the success of SVM in

binary classification problems into multi-class classification problems

• We will study different approaches in formulating multi-class SVM in

both theoretical properties (Fisher consistency) and empirical

performance of the models

Introduction 1



Table of Contents

1. Introduction

2. Formulations

3. Fisher Consistency

4. Experiments

5. Conclusions

Table of Contents 2



Formulations



Standard SVM Formulation

• Training data:

{(x1, y1), (x2, y2), · · · (xn, yn)}

– xi : vector of features for the i-th example

– yi : label for the i-th example, yi ∈ {−1,+1}
– n : total number of training examples

• Goal:

Find the maximum-margin hyperplane

i.e. the hyperplane that separates positive examples from negative examples

which has the largest margin
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Hyperplane

• A hyperplane in a d dimensional data Rd :

w · x + b = 0

– w ∈ Rd : a non-zero vector normal to the hyperplane

– b ∈ R : a scalar

Standard SVM Formulation 4



Maximum-margin hyperplane (right) and another hyperplane (left)

Margin:

ρ =
1

‖w‖

Marginal hyperplanes:

w · x + b = +1

w · x + b = −1

Mohri, M. et al. Foundations of machine learning (MIT press, 2012).
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Optimization

• Maximizing margin ρ = 1
‖w‖

• Equivalent:

Minimizing ‖w‖ or 1
2‖w‖

2

• Denote: f (xi ) = w · xi + b → potential

• Marginal hyperplane definition

⇒ |w · xi + b| ≥ 1 for each example i ∈ [1, n]
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Optimization and Prediction

• Quadratic Programming Formulation:

min
w,b

1

2
‖w‖2

subject to: yi (w · xi + b) ≥ 1, ∀i ∈ [1, n].

• Prediction for a new data x:

h(x) = sign(w · x + b).
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Soft-Margin SVM

• Real world data are not always linearly separable

• Allow violation, i.e. some points xi can have

yi (w · xi + b) � 1,

but add penalty to the optimization when there is a violation

• Introduce a slack variable ξi for each point i ∈ [1, n]

min
w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to: yi (w · xi + b) ≥ 1− ξi
ξi ≥ 0 ∀i ∈ [1, n],

• C ≥ 0: a parameter for balancing between maximizing margin and

minimizing the violation
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Hinge Loss

• Note that: f (xi ) = w · xi + b

• The penalty ξi for example xi :

• 0, if yi f (xi ) ≥ 1

• 1− yi f (xi ), if yi f (xi ) < 1

• The loss:

[1− yi f (xi )]+

where [u]+ = u if u ≥ 0 and 0 otherwise

• Hinge loss

Standard SVM Formulation 9



Hinge Loss

• Note that: f (xi ) = w · xi + b

• The penalty ξi for example xi :

• 0, if yi f (xi ) ≥ 1

• 1− yi f (xi ), if yi f (xi ) < 1

• The loss:

[1− yi f (xi )]+

where [u]+ = u if u ≥ 0 and 0 otherwise

• Hinge loss

Standard SVM Formulation 9



Standard SVM Formulation 10



Multi-class Classification

• Training data:

{(x1, y1), (x2, y2), · · · (xn, yn)}

– xi : vector of features for the i-th example

– yi : label for the i-th example

yi can have an integer value from 1 to k ; yi ∈ [1, k]

– k : the number of classes

– n : total number of training examples

Multi-class SVM Formulations 11



Multi-class SVM Formulations

A. Multi-machine Formulations

• One Versus One (OVO)

• One Versus All (OVA)

B. All-in-one Machine Formulations

• Weston and Watkins (WW) Formulation

• Crammer and Singer (CS) Formulation

• Lee, Lin, and Wahba (LLW) Formulation

Multi-class SVM Formulations 12
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Multi-machine Formulations

• Divide a multi-class classification problem into several binary

classification tasks.

All-in-one Machine Formulations 13



One Versus One

• Construct a binary classification problem for each pair of classes

(a, b) ∈ {(a, b)|a < b , a, b ∈ [1, k]}
• Each classifier differentiate a-th class from b-th class.

Resulting in a decision function ha−b(x)

Deng, N. et al. Support vector machines: optimization based theory, algorithms, and

extensions (CRC press, 2012).
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Three classes classification
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First OVO model
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Second OVO model
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Third OVO model
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One Versus One

• k(k − 1)/2 decision functions in total

• Final decision: take the class which has the most votes

Deng, N. et al. Support vector machines: optimization based theory, algorithms, and

extensions (CRC press, 2012).
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One Versus All

• Construct k binary classifiers

• The a-th binary classifier tries to separate a-th class from the rest

Deng, N. et al. Support vector machines: optimization based theory, algorithms, and

extensions (CRC press, 2012).
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Three classes classification
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First OVA model
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Second OVA model
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Third OVA model
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One Versus All

• Let fa(x) = wa · x + ba be the potential function constructed by the

a-th binary classifier, where:

The classifier will pick class a if fa(x) > 0

• Final decision:

ŷ = argmax
a∈[1,k]

fa(x)

Deng, N. et al. Support vector machines: optimization based theory, algorithms, and

extensions (CRC press, 2012).
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All-in-one Machine Formulations

• Construct a single model that considers all classes

• Directly modifies the optimization in binary SVM by:

1. Modifying the objective function

2. Modifying the constraints

• Formulations:

1. Weston and Watkins (WW) Formulation

2. Crammer and Singer (CS) Formulation

3. Lee, Lin, and Wahba (LLW) Formulation

All-in-one Machine Formulations 26
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Weston and Watkins (WW) Formulation

• A parameter wj for each class

• A slack variable ξi,j for each example and each class

• Define: the potential function for class j

fj(xi ) = wj · xi + bj

Weston, J., Watkins, C., et al. Support vector machines for multi-class pattern

recognition. in ESANN 99 (1999), 219–224.
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Standard Binary SVM

min
w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to: yi (w · xi + b) ≥ 1− ξi
ξi ≥ 0 ∀i ∈ [1, n]

Weston and Watkins (WW) Formulation

min
w,b,ξ

1

2

k∑
j=1

‖wj‖2 + C
n∑

i=1

∑
j∈{1,··· ,k}\yi

ξi,j

subject to: (wyi · xi + byi )− (wj · xi + bj) ≥ 2− ξi,j
ξi,j ≥ 0, i ∈ [1, n], j ∈ {1, · · · , k}\yi
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Weston and Watkins (WW) Formulation

• Prediction:

h(x) = argmax
j

[wj · x + bj ] = argmax
j

fj(x)

Weston, J., Watkins, C., et al. Support vector machines for multi-class pattern

recognition. in ESANN 99 (1999), 219–224.
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Crammer and Singer (CS) Formulation

• A parameter wj for each class

• Only one slack variable ξi for each example, (instead of k)

Crammer, K. & Singer, Y. On the algorithmic implementation of multiclass

kernel-based vector machines. The Journal of Machine Learning Research 2, 265–292

(2002).
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Weston and Watkins (WW) Formulation
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2
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Lee, Lin, and Wahba (LLW) Formulation

• A parameter wj for each class

• A slack variable ξi,j for each example and each class

• Use the absolute potential value fj(xi )

Instead of using the relative potential difference fyi (xi )− fj(xi )

Lee, Y. et al. Multicategory support vector machines: Theory and application to the

classification of microarray data and satellite radiance data. Journal of the American

Statistical Association 99, 67–81 (2004).
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Weston and Watkins (WW) Formulation

min
w,b,ξ

1

2

k∑
j=1

‖wj‖2 + C
n∑

i=1

∑
j∈{1,··· ,k}\yi

ξi,j

subject to: ξi,j ≥ 2 + fj (xi )− fyi (xi )

ξi,j ≥ 0, i ∈ [1, n], j ∈ {1, · · · , k}\yi

Lee, Lin, and Wahba (LLW) Formulation

min
w,b,ξ

1

2

k∑
j=1

‖wj‖2 + C
n∑

i=1

∑
j∈{1,··· ,k}\yi

ξi,j

subject to: ξi,j ≥ fj(xi ) +
1

k − 1
;

k∑
j=1

fj(xi ) = 0

ξi,j ≥ 0; i ∈ [1, n], j ∈ {1, · · · , k}\yi

Lee, Lin, and Wahba (LLW) Formulation 33



Fisher Consistency



Fisher Consistency in Binary Classification

• Fisher consistency / Bayes Consistency:

Requires a classifier to asymptotically yields Bayes decision boundary

• Binary case:

A loss V (f (x, y)) is Fisher consistent if:

The minimizer of E[V (f (X,Y ))|X = x] has the same sign as

the Bayes decision P(Y = 1|X = x)− 1
2

• Binary SVM is Fisher consistent1

The minimizer of E[[1− Yf (X)]+|X = x] is

sign(P(Y = 1|X = x)− 1
2 )

1Lin, Y. Support vector machines and the Bayes rule in classification. Data Mining

and Knowledge Discovery 6, 259–275 (2002).
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Fisher Consistency in Multi-class Classification

• k class. y ∈ [1, k]

• Let: Pj(x) = P(Y = j |X = x)

• Potential vectors : f(x) = [f1(x), · · · , fk(x)]T

• Denote: f∗(x) = [f ∗1 (x), · · · , f ∗k (x)]T is the minimizer

of E[V (f (X,Y ))|X = x]

• Fisher consistency requires:

argmax
j

f ∗j (x) = argmax
j

Pj(x)

• Remove redundant solutions:

Employ the constraint:
∑k

i=1 fj(x) = 0

Liu, Y. Fisher consistency of multicategory support vector machines in International

Conference on Artificial Intelligence and Statistics (2007), 291–298.
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All-in-One Machines

Simplify the losses for analysis: change the constants to 1

1. LLW loss:

VLLW(f (X,Y )) =
∑
j 6=y

[1 + fj(x)]+

2. WW loss:

VWW(f (X,Y )) =
∑
j 6=y

[1− (fy (x)− fj(x))]+

3. CS loss:

VCS(f (X,Y )) = [1−min
j

(fy (x)− fj(x))]+

4. Naive loss:

VNaive(f (X,Y )) = [1− fy (x)]+

WW and CS: Relative potential differences

LLW and Naive: Absolute potential values

Fisher Consistency in Multi-class Classification 36



Fisher Consistency of the All-in-One Machines SVM

A. Fisher Consistency of the All-in-One Machines SVM

1. Inconsistency of the Naive Formulation

2. Consistency of the LLW Formulation

3. Inconsistency of the WW Formulation

4. Inconsistency of the CS Formulation

B. Modification of the Inconsistent Formulations

1. Modification of the Naive Formulation

2. Modification of the WW Formulation

3. Modification of the CS Formulation

Liu, Y. Fisher consistency of multicategory support vector machines in International

Conference on Artificial Intelligence and Statistics (2007), 291–298.
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Inconsistency of the Naive Formulation

• For any fixed X = x:

Minimizing E[VNaive(f (X,Y ))] = E[[1− fY (x)]+] is equal to

minimizing
∑k

l=1 Pl(x)([1− fl(x)]+)

• We want to find properties of the minimizer f∗

Lemma 1.

The minimizer f∗ of E[[1− fY (X)]+|X = x] =
∑k

l=1 Pl(x)([1− fl(x)]+)

subject to
∑k

j=1 fj(x) = 0 satisfies the following: f ∗j (x) = −(k − 1) if

j = argminj Pj(x) and 1 otherwise.

Inconsistency of the Naive Formulation 38
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Lemma 1.

The minimizer f∗ of E[[1− fY (X)]+|X = x] =
∑k

l=1 Pl (x)([1− fl (x)]+) subject to∑k
j=1 fj (x) = 0 satisfies the following: f ∗j (x) = −(k − 1) if j = argminj Pj (x) and 1

otherwise.

• The minimization can be reduced to: (proof omitted)

max
f

k∑
l=1

Pl(x)fl(x)

subject to:
k∑

l=1

fl(x) = 0

fj(x) ≤ 1, ∀l ∈ [1, k]

• The solution for the maximization above:

satisfies f ∗j (x) = −(k − 1) if j = argminj Pj(x) and 1 otherwise

• The Naive hinge loss formulation is not Fisher consistent

Inconsistency of the Naive Formulation 39
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Consistency of the LLW Formulation

• For any fixed X = x:

Minimizing E[VLLW(f (X,Y ))] = E[
∑

j 6=Y [1 + fj(X)]+] is equal to

minimizing
∑k

l=1

∑
j 6=l Pl(x)([1 + fj(x)]+)

• We want to find properties of the minimizer f∗

Lemma 2.

The minimizer f∗ of

E[
∑

j 6=Y [1 + fj(X)]+|X = x] =
∑k

l=1

∑
j 6=l Pl(x)([1 + fj(x)]+) subject to∑k

j=1 fj(x) = 0 satisfies the following: f ∗j (x) = k − 1 if

j = argmaxj Pj(x) and -1 otherwise.

Consistency of the LLW Formulation 40
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j 6=l Pl (x)([1 + fj (x)]+)

subject to
∑k

j=1 fj (x) = 0 satisfies the following: f ∗j (x) = k − 1 if j = argmaxj Pj (x)

and -1 otherwise.

Proof

• The minimization can be reduced to: (proof omitted)

max
f

k∑
l=1

Pl(x)fl(x)

subject to:
k∑

l=1

fl(x) = 0

fl(x) ≥ −1, ∀l ∈ [1, k]

◦ The solution for the maximization above:

satisfies f ∗j (x) = k − 1 if j = argmaxj Pj(x) and -1 otherwise

• The LLW formulation is Fisher consistent
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Inconsistency of the WW Formulation

• For any fixed X = x:

Minimizing E[VWW(f (X,Y ))] = E[
∑

j 6=y [1− (fY (x)− fj(x))]+] is

equal to minimizing
∑k

l=1

∑
j 6=l Pl(x)([1− (fl(x)− fj(x))]+)

• We focus on the case where k = 3, and find the minimizer f∗

Lemma 3.

Consider the case where k = 3 with 1
2
> P1 > P2 > P3. The minimizer

f∗ = (f ∗1 , f
∗

2 , f
∗

3 ) of

E[
∑

j 6=y [1−(fY (X)− fj(X))]+|X = x] =
∑k

l=1

∑
j 6=l Pl(x)([1−(fl(x)− fj(x))]+)

is the following:

(1) If P2 = 1
3
, any f∗ satisfying f ∗1 ≥ f ∗2 ≥ f ∗3 and f ∗1 − f ∗3 = 1.

(2) If P2 >
1
3
, any f∗ satisfying f ∗1 ≥ f ∗2 ≥ f ∗3 , f ∗1 = f ∗2 and f ∗2 − f ∗3 = 1.

(3) If P2 <
1
3
, any f∗ satisfying f ∗1 ≥ f ∗2 ≥ f ∗3 , f ∗2 = f ∗3 and f ∗1 − f ∗2 = 1.
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Lemma 3.

Consider the case where k = 3 with 1
2
> P1 > P2 > P3. The minimizer

f∗ = (f ∗1 , f
∗

2 , f
∗

3 ) of

E[
∑

j 6=y [1− (fY (X)− fj (X))]+|X = x] =
∑k

l=1

∑
j 6=l Pl (x)([1− (fl (x)− fj (x))]+) is

the following:

(1) If P2 = 1
3

, any f∗ satisfying f ∗1 ≥ f ∗2 ≥ f ∗3 and f ∗1 − f ∗3 = 1.

(2) If P2 >
1
3

, any f∗ satisfying f ∗1 ≥ f ∗2 ≥ f ∗3 , f ∗1 = f ∗2 and f ∗2 − f ∗3 = 1.

(3) If P2 <
1
3

, any f∗ satisfying f ∗1 ≥ f ∗2 ≥ f ∗3 , f ∗2 = f ∗3 and f ∗1 − f ∗2 = 1.

From Lemma 3:

• In the case of k = 3 with 1
2 > P1 > P2 > P3

• The WW formulation is Fisher consistent only when P2 <
1
3
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Inconsistency of the CS Formulation

• Denote g(f(x), y) = {fy (x)− fj(x); j 6= y}
The CS loss can be rewritten as: [1−min g(f(x), y)]+

• For any fixed X = x:

Minimizing E[VCS(f (X,Y ))] = E[[1−minj (fY (X)− fj(X))]+] is

equal to minimizing
∑k

l=1 Pl(x)([1−min g(f(x), l)]+)

• We want to find properties of the minimizer f∗

Lemma 4.

The minimizer f∗ of E[1−minj (fY (X)− fj(X))+|X = x] subject to∑k
j=1 fj(x) = 0 satisfies the following properties:

(1) If maxj Pj >
1
2
, then argmaxj f

∗
j = argmaxj Pj and

min g∗(f(x), argmaxj f
∗
j ) = 1.

(2) If maxj Pj <
1
2
, then f∗ = 0
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Lemma 4.

The minimizer f∗ of E[1−minj (fY (X)− fj (X))+|X = x] subject to
∑k

j=1 fj (x) = 0

satisfies the following properties:

(1) If maxj Pj >
1
2

, then argmaxj f
∗
j = argmaxj Pj and min g∗(f(x), argmaxj f

∗
j ) = 1.

(2) If maxj Pj <
1
2

, then f∗ = 0

From Lemma 4:

• For the problem with k > 2, the existence of a domination class

(Pj >
1
2 ) cannot be guaranteed

• If maxj Pj <
1
2 for a given x, then f∗(x) = 0

In this case argmaxj fj(x) cannot uniquely determined

• The CS formulation is Fisher consistent only when there is a

domination class
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Modification of the Inconsistent Formulations

B. Modification of the Inconsistent Formulations

1. Modification of the Naive Formulation

2. Modification of the WW Formulation

3. Modification of the CS Formulation

Liu, Y. Fisher consistency of multicategory support vector machines in International

Conference on Artificial Intelligence and Statistics (2007), 291–298.
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Modification of the Naive Formulation

Reduced problem in the Naive Formula (Inconsistent Loss)

max
f

k∑
l=1

Pl (x)fl (x)

subject to:
k∑

l=1

fl (x) = 0, fl (x) ≤ 1, ∀l ∈ [1, k]

Reduced problem in the LLW Formula (Consistent Loss)

max
f

k∑
l=1

Pl (x)fl (x)

subject to:
k∑

l=1

fl (x) = 0, fl (x) ≥ −1, ∀l ∈ [1, k]

→ The only difference is the constraint for fl(x)
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Modification of the Naive Formulation

• If we add an additional constraint fl(x) ≥ − 1
k−1 ,∀l ∈ [1, k]

to the Naive formulation, the minimizer becomes:

f ∗j (x) = 1 if j = argmaxj Pj(x) and − 1
k−1 otherwise

which indicates consistency.

• By rescaling the constant, we get the following consistent loss:

VConsistent-Naive(f (X,Y )) = [k − 1− fy (x)]+

subject to:
k∑

j=1

fj(x) = 0; fl(x) ≥ −1, ∀l ∈ [1, k]
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Modification of the WW Formulation

• Note that the WW loss:

VWW(f (X,Y )) =
∑
j 6=y

[1− (fy (x)− fj(x))]+

• Add a new constraint −1 ≤ fj(x) ≤ k − 1, change the constant part,

the loss reduces to:

V (f (X,Y )) = k[k − 1− fy (x)]+

subject to:
k∑

j=1

fj(x) = 0; fl(x) ≥ −1, ∀l ∈ [1, k]

• The loss is equivalent to the Consistent-Naive formulation.

Therefore it is Fisher consistent.
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Modification of the WW Formulation : Optimization

• The constraint −1 ≤ fj(x) ≤ k − 1,∀j can be difficult to achieve for

all possible x in the feature spaces

• It is suggested that we need to restrict the constraint to the training

data points only.

min
f

1

2

k∑
j=1

‖fj‖2 + C
n∑

i=1

fyi (xi )

subject to:
k∑

j=1

fj(xi ) = 0; fj(x) ≥ −1; ∀l ∈ [1, k], i ∈ [1, n].

• To better understand the formulation above, we analyze the binary

case version (y ∈ {±1})
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An example of standard binary SVM solution (left) and modified WW

formulation solution (right) in a two dimensional dataset.

Liu, Y. Fisher consistency of multicategory support vector machines in International

Conference on Artificial Intelligence and Statistics (2007), 291–298.
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Modification of the CS Formulation

• The CS formulation cannot easily modified by adding a bounded

constraint as in the WW formulation

• We explore the idea of truncating the hinge loss
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Function plot of H1(u) (left), Hs(u) (middle), and Ts(u) (right)

Liu, Y. Fisher consistency of multicategory support vector machines in International

Conference on Artificial Intelligence and Statistics (2007), 291–298.
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Modification of the CS Formulation

• For any s ≤ 0, it can be proven that the truncated version of the CS

formulation is Fisher consistent, even in the case there is no

dominating class

Modification of the CS Formulation 54



Experiments



Experiments

A. Artificial Benchmark Problem

1. Artificial Benchmark Setup

2. Benchmark Result

B. Empirical Comparison
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Artificial Benchmark Setup

• Help understand when and why some formulations deliver

substantially sub-optimal solutions

• Domain: X = S1 = {x ∈ R2 | ‖x‖ = 1} → unit circle

• Circle is parameterized using:

β(t) = (cos(t · π10 ), sin(t · π10 )) where t ∈ [0, 20]

• 3 classes classification, Y = {1, 2, 3}

Artificial Benchmark Problem 56
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Artificial Benchmark Setup

• Noise-less problem

◦ The label y is drawn uniformly from Y

◦ Then x is drawn uniformly at random from

sector Xy

Sectors: X1 = β([0, 5)), X2 = β([5, 11)), and

X3 = β([11, 20))

• Bayes-optimal prediction:

Predict label y on sector Xy
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Artificial Benchmark Setup

• Noisy problem

◦ The same step as in the noise-less problem

◦ Reassign 90% of the labels uniformly at

random

◦ Therefore, the distribution of X is remain

unchanged

The conditional distributions of the label

given a x point are changed:

Conditioned on x ∈ Xz , the event of y = z

has probability 40%, while the other two

cases have probability of 30%

• Bayes-optimal prediction:

Predict label y on sector Xy
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Artificial Benchmark Result

Multi-class SVM Loss Review:

1. LLW loss:

VLLW(f (X,Y )) =
∑
j 6=y

[1 + fj(x)]+

2. WW loss:

VWW(f (X,Y )) =
∑
j 6=y

[1− (fy (x)− fj(x))]+

3. CS loss:

VCS(f (X,Y )) = [1−min
j

(fy (x)− fj(x))]+

WW and CS: Relative potential differences, i.e. (fy (x)− fj(x))

LLW: Absolute potential values, i.e. fj(x)

OVA: k binary classifiers, the loss in each classifier depends on the potential

fj(x). Therefore, the loss for OVA can be viewed as the summation over

absolute potential value losses.
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Noise-less problem
Sector separators:

Bayes-optimal predictor.

Colors:

Blue = Class 1

Green = Class 2

Red = Class 3

Points outside the circle:

100 training samples.

Colored circles:

Classifier prediction for

C = 10n, n ∈ {0, 1, 2, 3, 4},
from inner to outer circles

Dogan, U. et al. A Unified View on Multi-class Support Vector Classification. The

Journal of Machine Learning Research (2015).
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Noise-less problem results

• Sub-optimal solution of absolute potential values losses

(LLW and OVA)

◦ Both the LLW and OVA formulations give sub-optimal solutions

◦ Fisher consistency property of the LLW formulation does not help

◦ Dogan claimed that the sub-optimal solutions are caused by the

absolute potential values used in the loss construction,

which are not compatible with the form of the decision function.
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Noisy problem
Sector separators:

Bayes-optimal predictor.

Colors:

Blue = Class 1

Green = Class 2

Red = Class 3

Points outside the circle:

500 training samples.

Colored circles:

Classifier prediction for C =

10n, n ∈ {−4,−3,−2,−1, 0},
from inner to outer circles

Dogan, U. et al. A Unified View on Multi-class Support Vector Classification. The

Journal of Machine Learning Research (2015).
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Review of Lemma 4. in the CS Formulation

Lemma 4.

The minimizer f∗ of E[1−minj (fY (X)− fj (X))+|X = x] subject to
∑k

j=1 fj (x) = 0

satisfies the following properties:

(1) If maxj Pj >
1
2

, then argmaxj f
∗
j = argmaxj Pj and min g∗(f(x), argmaxj f

∗
j ) = 1.

(2) If maxj Pj <
1
2

, then f∗ = 0
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Experiment Setup

• 17 datasets from UCI ML repository and libsvm’s collection

• Data pre-processing:

Rescale to unit variance (based on the training statistics)

• Model Selection (for selecting C ):

Five-folds cross-validation, repeated ten times

• Evaluation:

◦ 100 different random splits of training and testing data

◦ The setup yields 100 different testing accuracies

◦ Paired U-tests at significance level 0.01

Empirical Comparison 64
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Datasets

Dataset Number of classes Training data Testing data

Covertype 7 406708 174304

Letter 26 14000 6000

News-20 20 14000 6000

Sector 105 6412 3207

Usps 10 7291 2007

Abalone 27 3133 1044

Car 4 1209 519

Glass 6 149 65

Iris 3 105 45

Opt. Digits 10 3823 1797

Page Blocks 5 3831 1642

Sat 7 4435 2000

Segment 7 1617 693

Soy Bean 19 214 93

Vehicle 4 592 254

Red wine 10 1119 480

White wine 10 3429 1469
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Empirical Result

Dataset OVA WW CS LLW

Covertype 50.59 (±5.49) 70.55 (±0.09) 45.73 (±5.88) 21.87 (±23.19)

Letter 63.69 (±0.48) 69.39 (±0.63) 76.59 (±0.61) 12.78 (±0.40)

News-20 85.36 (±0.32) 85.13 (±0.15) 85.17 (±0.32) 86.71 (±0.39)

Sector 94.53 (±0.22) 94.10 (±0.33) 94.80 (±0.29) 94.82 (±0.28)

Usps 94.50 (±0.39) 94.46 (±0.57) 95.26 (±0.46) 78.18 (±5.27)

Abalone 18.95 (±0.86) 21.70 (±1.30) 14.12 (±1.64) 16.56 (±1.17)

Car 71.69 (±1.73) 73.76 (±1.68) 73.15 (±2.02) 65.34 (±12.17)

Glass 56.98 (±6.44) 61.93 (±6.63) 61.93 (±6.04) 46.78 (±6.77)

Iris 91.11 (±4.85) 95.88 (±1.71) 91.76 (±7.18) 74.65 (±7.52)

Opt. Digits 95.98 (±0.60) 96.03 (±0.37) 96.42 (±0.37) 73.56 (±2.11)

Page Blocks 70.44 (±21.20) 91.14 (±5.41) 94.20 (±2.34) 93.22 (±1.02)

Sat 75.04 (±0.96) 77.40 (±3.00) 66.87 (±9.90) 51.47 (±9.01)

Segment 92.54 (±0.75) 92.43 (±2.13) 92.43 (±2.13) 74.50 (±1.32)

Soy Bean 90.65 (±3.03) 87.75 (±3.16) 83.49 (±5.80) 77.95 (±9.97)

Vehicle 52.02 (±11.98) 72.75 (±4.13) 72.75 (±4.13) 63.21 (±10.63)

Red wine 53.38 (±2.63) 58.37 (±1.69) 55.61 (±2.47) 57.26 (±2.02)

White wine 50.73 (±1.27) 51.78 (±1.24) 50.85 (±1.12) 46.44 (±1.74)

Accuracies and standard deviations for each dataset.
Highlighted numbers: the best model and other models that is not significantly worse

than the best one using paired U-test with α = 0.01
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Opt. Digits 95.98 (±0.60) 96.03 (±0.37) 96.42 (±0.37) 73.56 (±2.11)

Page Blocks 70.44 (±21.20) 91.14 (±5.41) 94.20 (±2.34) 93.22 (±1.02)

Sat 75.04 (±0.96) 77.40 (±3.00) 66.87 (±9.90) 51.47 (±9.01)

Segment 92.54 (±0.75) 92.43 (±2.13) 92.43 (±2.13) 74.50 (±1.32)

Soy Bean 90.65 (±3.03) 87.75 (±3.16) 83.49 (±5.80) 77.95 (±9.97)

Vehicle 52.02 (±11.98) 72.75 (±4.13) 72.75 (±4.13) 63.21 (±10.63)

Red wine 53.38 (±2.63) 58.37 (±1.69) 55.61 (±2.47) 57.26 (±2.02)

White wine 50.73 (±1.27) 51.78 (±1.24) 50.85 (±1.12) 46.44 (±1.74)

WW : highlighted 9 times
CS : highlighted 8 times
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Empirical Result

Dataset OVA WW CS LLW

Covertype 50.59 (±5.49) 70.55 (±0.09) 45.73 (±5.88) 21.87 (±23.19)

Letter 63.69 (±0.48) 69.39 (±0.63) 76.59 (±0.61) 12.78 (±0.40)

News-20 85.36 (±0.32) 85.13 (±0.15) 85.17 (±0.32) 86.71 (±0.39)

Sector 94.53 (±0.22) 94.10 (±0.33) 94.80 (±0.29) 94.82 (±0.28)

Usps 94.50 (±0.39) 94.46 (±0.57) 95.26 (±0.46) 78.18 (±5.27)

Abalone 18.95 (±0.86) 21.70 (±1.30) 14.12 (±1.64) 16.56 (±1.17)

Car 71.69 (±1.73) 73.76 (±1.68) 73.15 (±2.02) 65.34 (±12.17)

Glass 56.98 (±6.44) 61.93 (±6.63) 61.93 (±6.04) 46.78 (±6.77)

Iris 91.11 (±4.85) 95.88 (±1.71) 91.76 (±7.18) 74.65 (±7.52)

Opt. Digits 95.98 (±0.60) 96.03 (±0.37) 96.42 (±0.37) 73.56 (±2.11)

Page Blocks 70.44 (±21.20) 91.14 (±5.41) 94.20 (±2.34) 93.22 (±1.02)

Sat 75.04 (±0.96) 77.40 (±3.00) 66.87 (±9.90) 51.47 (±9.01)

Segment 92.54 (±0.75) 92.43 (±2.13) 92.43 (±2.13) 74.50 (±1.32)

Soy Bean 90.65 (±3.03) 87.75 (±3.16) 83.49 (±5.80) 77.95 (±9.97)

Vehicle 52.02 (±11.98) 72.75 (±4.13) 72.75 (±4.13) 63.21 (±10.63)

Red wine 53.38 (±2.63) 58.37 (±1.69) 55.61 (±2.47) 57.26 (±2.02)

White wine 50.73 (±1.27) 51.78 (±1.24) 50.85 (±1.12) 46.44 (±1.74)

“News-20” and “Sector” : high dimensional feature spaces

(62,061 and 55,197 features respectively)
Other datasets : rather low dimensional feature spaces
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Conclusions

• We explored the efforts on bringing the success of SVM in binary

classification problems into multi-class classification problems

• We described formulation of each model in both learning and

prediction tasks

• We discussed the Fisher consistency properties of the all-in-one

machine formulations

• We showed the consistency of the LLW formulation and the

inconsistency of the WW and CS formulations
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Conclusions

• We studied the modification proposed by Liu2 to make the WW and

CS formulations Fisher consistent

• The modifications of the WW formulation:

◦ Results in a new classification model which enforce all points to lie

inside the classification boundary

◦ The model loses the sparsity property

◦ Sparsity is a key property in analyzing the SVM’s theoretical

properties, e.g. analyzing generalization bounds of the model

◦ The effect of losing the sparsity to the prediction performance need

to be analyzed for the proposed model.

2Liu, Y. Fisher consistency of multicategory support vector machines in International

Conference on Artificial Intelligence and Statistics (2007), 291–298.
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Conclusions

• The modifications of the CS formulation:

◦ Introduce a truncated version of hinge loss

◦ The truncated loss version fix the inconsistency of the CS formulation

◦ The optimization is no-longer convex

◦ The convergence to global optimum cannot be guaranteed

◦ Local optimum solution may effect the prediction performance
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Conclusions

• We discussed the experiment result presented in Dogan’s paper3

• Interesting result of the LLW formulation:

Although it has the Fisher consistency property, it performs poorly in

the data which has low-dimensional feature spaces

• This poor results are confirmed in both by artificial benchmark study

and empirical evaluation on real datasets

• The source of the problem is possibly caused by the construction of

the LLW loss which uses the the absolute potential values instead of

the relative potential differences.

• Employing kernel trick to the LLW formulation is suggested.

3Dogan, U. et al. A Unified View on Multi-class Support Vector Classification. The

Journal of Machine Learning Research (2015).
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Conclusions

• The WW and CS models which based on the relative potential

differences, perform well in most datasets, with a slight advantages

for the WW model.

• Dogan recommends relative potential difference based model for

almost all applications.

• The WW formulation is more preferred over the CS formulation for

its slightly more stable performance.
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Conclusions

• A new research question:

Is it possible to have a Fisher consistent formulation of multi-class

SVM which performs well on low-dimensional feature spaces dataset?

• The answer might be:

To construct a Fisher consistent loss which use the relative potential

differences rather than on the absolute potential values

• A following research needs to be conducted
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Thank You!
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