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Data
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Distribution
෨𝑃(𝒙, 𝑦)
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possible
value of 𝑦
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Multiclass Classification → Zero-One Loss
Digit Recognition

…

1

2

3

…

Loss Function:
loss ො𝑦, 𝑦 = 𝐼( ො𝑦 ≠ 𝑦)

3

General Multiclass Classification → any loss



Multiclass Classification → Ordinal Classification

…

1

2

5

Loss Function (example):
loss ො𝑦, 𝑦 = | ො𝑦 − 𝑦|

Movie Rating Prediction

…

Predicted vs Actual Label:

Distance Loss

4



Multiclass Classification → Taxonomy Classification

Loss Function (example):
loss ො𝑦, 𝑦 = ℎ − 𝑣 ො𝑦, 𝑦 + 1

Object Classification

Object

Nonlife

Two-wheeled

1:Bicycle 2:Motorbike

Four-wheeled

3:Bus 4:Car

Life

5:Person Animal

Carnivore

6:Cat 7:Dog

Herbivore

8:Cow

ℎ = 4

ℎ : tree height
𝑣 ො𝑦, 𝑦 : level of the common ancestor

loss(Cat,Dog) = 1
loss(Cat,Cow) = 2
loss(Cow,Person) = 3
Loss(Cow,Motorbike)= 4

loss(Bus,Car) = 2
loss(Bus,Bicycle) = 3
loss(Car,Cow) = 4
loss(Bus,Person) = 4
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Multiclass Classification → Loss Matrix

Zero One Loss
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loss function: loss ො𝑦, 𝑦 → loss matrix: 𝑳

loss ො𝑦, 𝑦 = 𝐼( ො𝑦 ≠ 𝑦)

Ordinal Classification Loss

loss ො𝑦, 𝑦 = | ො𝑦 − 𝑦|

Taxonomy-based loss

loss ො𝑦, 𝑦 = ℎ − 𝑣 ො𝑦, 𝑦 + 1



Empirical Risk Minimization (ERM)

• Assume a family of parametric hypothesis function 𝑓 (e.g. linear discriminator)
• Find the hypothesis 𝑓∗ that minimize the empirical risk:

Intractable optimization, non-convex, non-continuous

Convex surrogate loss need to be employed

Example:

Binary zero-one loss

Surrogate Loss:

• Hinge loss (used by SVM)
• Log loss (used by Logistic Regression)
• Exponential loss (used by AdaBoost)
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ERM under Hinge Loss and Log Loss

SVM (hinge loss):

Binary SVM and Binary Logistic Regression:
Fisher consistent

Logistic regression (log loss):

Probabilistic prediction ෠𝑃𝑓(𝑦|𝒙)

Binary SVM only:
Dual parameter sparsity

Surrogate loss for multiclass cases:

Fisher consistent: produce Bayes optimal decision in the limit

Extend binary surrogate loss like hinge-loss and log-loss to multiclass
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Adversarial Prediction (Asif et. al., 2015)

Empirical Risk Minimization
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Approximate the lossOriginal Loss
Non-convex, non-continuous with convex surrogates

Probabilistic prediction

Evaluate against an adversary,
instead of using empirical data

Adversary’s probabilistic prediction Constraint the statistics of
the adversary’s distribution
to match the empirical statistics

Adversarial Prediction

Empirical Risk Minimization

Approximate loss
Exact training data

Adversarial Prediction

Exact loss
Approximate training data

(by only using the statistics)



Adversarial Prediction → Optimization
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where:

Adversarial Prediction

Minimization over many zero-sum games

Example of game matrix            for zero-one loss

Inner optimization

Can be solved using Linear Programming
Complexity: 𝑂(| |𝒴 3.5)

Minimax and Lagrangian duality



Adversarial Prediction → ERM perspective
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Adversarial Prediction (optimization)

Empirical Risk Minimization with surrogate loss:

Adversarial Surrogate Loss 
=

The Nash equilibrium value of
the zero-sum game characterized by matrix 𝑳𝒙,𝜃

′

where:



ALord

AL0-1

12

Outline

The Adversarial Surrogate Loss for Multiclass Zero-One Classification1

Adversarial Surrogate Losses for Multiclass Ordinal Classification2

Ongoing and Future Works3



Based on:

Rizal Fathony, Anqi Liu, Kaiser Asif, Brian D. Ziebart. “Adversarial Multiclass Classification: A 
Risk Minimization Perspective”. Advances in Neural Information Processing Systems 29 (NIPS), 
2016.

The Adversarial Surrogate Loss 
for Multiclass Zero-One Classification
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Multiclass Zero-One: Related Works
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1. The WW Model (Weston et.al., 2002)

Multiclass Support Vector Machine

2. The CS Model (Crammer and Singer, 1999)

3. The LLW Model (Lee et.al., 2004)

with:

Fisher Consistent?
(Tewari and Bartlett, 2007)

(Liu, 2007)

Perform well in
low feature spaces?

(Dogan, 2016)

Relative Margin Model

Relative Margin Model

Absolute Margin Model



Adversarial Prediction : Multiclass Zero-One Loss
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Adversarial Game

shorter notation

Nash Equilibrium



Adversarial Zero-Sum Game (Zero-One Loss)
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Ƽ𝑝1 Ƽ𝑝2 Ƽ𝑝3 Ƽ𝑝4

Ƹ𝑝1
Ƹ𝑝2
Ƹ𝑝3
Ƹ𝑝4

The augmented game for 4 classes

Ƽ𝑝1 Ƽ𝑝2 0 Ƽ𝑝4

Ƹ𝑝1
Ƹ𝑝2
Ƹ𝑝3
Ƹ𝑝4

when Ƽ𝑝3 = 0

Ƹ𝑝1
Ƹ𝑝2
0
Ƹ𝑝4

Ƽ𝑝1 Ƽ𝑝2 Ƽ𝑝4 Ƽ𝑝1 Ƽ𝑝2 Ƽ𝑝4

Ƹ𝑝1
Ƹ𝑝2
Ƹ𝑝4

if completely 
mixed

if completely 
mixed

Considering all possible set of adversary’s non-zero probability:

AL0-1 : maximization over 2|𝒴| − 1 hyperplanes 



AL0-1 (Adversarial Surrogate Loss) → Binary Classification
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AL0-1 for binary zero-one classification:

If the true label 𝑦 = 1

Change classification notation to 𝑦 ∈ +1,−1 , parameter to 𝒘 and 𝑏, add L2 regularization

Binary AL0-1 Soft Margin SVM



18



19



AL0-1 
→ 3 Class Classification
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AL0-1 for 3-class zero-one classification:

Maximization over 7 hyperplanes:

𝑦 = 1



AL0-1 
→ Fisher Consistency → Property of the Minimizer
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Fisher Consistency in Multiclass Zero-One Classification

The minimizer 𝒇∗ lies 
in the area defined by all class label

constraint is employed to remove redundant solution

𝑦 = 1

𝒮 = {1,2}



AL0-1 
→ Fisher Consistency
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Finding the minimizer 𝒇∗

based on the properties of the minimizer

Solution:

Fisher Consistent



AL0-1 
→Optimization → Primal
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Optimization of AL0-1 (Empirical Risk Minimization)

Gradient for a single sample 𝒙𝑖
Let 𝑅 be the set that maximize AL0-1 for 𝒙𝑖,
The sub-gradient for a single sample 𝒙𝑖 includes:

Finding the set 𝑅:
Greedy algorithm:

1. Compute all 𝜓𝑗 ≜ 𝜃𝑇 𝜙 𝒙𝑖 , 𝑗 − 𝜙 𝒙𝑖 , 𝑦𝑖
2. Sort 𝜓𝑗 in non-descending order

3. Start with empty set 𝑅 = ∅
4. Repeat:
5. Incrementally add 𝑗 to the set 𝑅, update the value of AL0-1

6. Until adding another one decrease the value of AL0-1



AL0-1 
→Optimization → Dual
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Primal Quadratic Programming Formulation of AL0-1 with L2 regularization

Constrained Primal QP

Dual QP Formulation

where:

, and is the constant part of



AL0-1 
→Optimization → Dual → Kernel Trick
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Dual QP Formulation

Kernel trick

input space
𝒙𝑖

rich feature space
𝜔(𝒙𝑖)

Compute the dot products implicitly

where:

𝑅𝑖,𝑘 is the set of labels included in the constraint Δ𝑖,𝑘



AL0-1 
→Optimization → Dual → Constraint Generation
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Primal and Dual Optimization

Exponential number of constraints (in primal) and dual variables  

Polynomial time convergence guarantee is provided

Constraint Generation Algorithm

Experiment shows better convergence rate



AL0-1 
→ Experiments
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Dataset properties and AL0-1 constraints



AL0-1 
→ Experiments → Results
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Results for Linear Kernel and Gaussian Kernel

The mean (standard deviation) of the accuracy
Bold numbers: best or not significantly worse than the best



Multiclass Zero-One Classification
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1. The SVM WW Model (Weston et.al., 2002)

2. The SVM CS Model (Crammer and Singer, 1999)

3. The SVM LLW Model (Lee et.al., 2004)

Fisher Consistent?
Perform well in

low feature spaces?

Relative Margin Model

Relative Margin Model

Absolute Margin Model

4. The AL0-1 (Adversarial Surrogate Loss)
Relative Margin Model



Based on:

Rizal Fathony, Mohammad Bashiri, Brian D. Ziebart. “Adversarial Surrogate Losses for Ordinal 
Regression”. Advances in Neural Information Processing Systems 30 (NIPS), 2017.

Adversarial Surrogate Losses 
for Multiclass Ordinal Classification
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Ordinal Classification: Related Works
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A. Threshold Methods (Sashua & Levin, 2003; Chu & Keerthi, 2005; Rennie & Srebro, 2005)

Support Vector Machine for Ordinal Classification

B. Reduction Framework (Li & Lin, 2007)

C. Cost Sensitive Classification Based Methods (Lin, 2008; Tu & Lin, 2010; Lin, 2014) 

Extend hinge loss to ordinal classification

1. All Threshold (also called SVORIM)

2. Immediate Threshold (also called SVOREX)

𝛿 is a surrogate for binary classification,
e.g. the hinge loss

- Create 𝒴 − 1 weighted extended samples for each training sample, 
- Run binary classification with binary surrogate loss (e.g. hinge loss) 

on the extended samples

1. Cost Sensitive One-Versus-All (CSOVA)

2. Cost Sensitive One-Versus-One (CSOVO)

3. Cost Sensitive One-Sided-Regression (CSOSR)



Adversarial Surrogate Loss : Ordinal Classification
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Adversarial Game

where

Nash Equilibrium

ALord : maximization over pairs

Can be independently realized



ALord
→ Feature Representation
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Thresholded Regression Representation Multiclass Representation

size : 𝑚+ 𝒴 − 1 size : 𝑚 𝒴
𝑚 is the dimension of input space 𝑚 is the dimension of input space

- a single shared vector of feature weights
- a set of threshold

- class specific feature weights

An example where 
multiclass representation
are useful

An example where 
thresholded regression
representation are useful



ALord
→ Thresholded Regression Representation
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ALord for the Thresholded Regression Representation

ALord-th : based on averaging the threshold label predictions

for potentials 𝒘 ⋅ 𝒙𝑖 + 1 and 𝒘 ⋅ 𝒙𝑖 − 1



ALord
→ Multiclass Representation
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ALord for the Multiclass Representation

ALord-mc : maximization over 
|𝒴|( 𝒴 +1)

2
hyperplanes



ALord
→ Fisher Consistency
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Fisher Consistency in Ordinal Classification

constraint is employed to remove redundant solution

Properties of the minimizer 𝒇∗

The minimizer 𝒇∗ satisfies the loss reflective property

examples:
[-1, 0, -1, -2]

[-2, -1, 0, -1, -2]

[0, -1, -2, -3]

[-3, -2, -1, 0, -1, -2] -3

-2

-1

0

-1

-2

Finding the minimizer 𝒇∗

based on the loss reflective property

Equivalent with finding 𝑗∗ (the class in a loss reflective 𝒇 that has 0 value)

Fisher Consistent



ALord
→Optimization → Primal
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Optimization of ALord (Empirical Risk Minimization)

Stochastic Average Gradient (SAG) (Schimidt et.al. 2013, 2015)

Average over the gradient  of each example from the last iteration it was selected
Requires storing the gradient of each sample.

SAG for ALord-mc

Objective:

Gradient for a single sample 𝒙𝑖:

assuming
𝑗∗ ≠ 𝑙∗ ≠ 𝑦𝑖

Store 𝑗∗ and 𝑙∗

instead of full gradient



ALord
→Optimization → Dual
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Primal Quadratic Programming Formulation of ALord with L2 regularization

Constrained Primal QP

Dual QP Formulation

Kernel trick can also be easily applied!



ALord
→ Experiments
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Dataset properties



ALord
→ Experiments → Linear Kernel
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Results for Linear Kernel



ALord
→ Experiments → Gaussian Kernel
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Results for Gaussian Kernel

All Threshold Intermediate Threshold



Conclusion
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Conclusion

Establish connections between Adversarial Prediction and ERMA

Propose Adversarial Surrogate Losses: B

Align better with the original loss
Optimizing Adversarial Loss in the ERM Framework

= Optimizing the original loss in the Adversarial Prediction Framework

1

Guarantee Fisher Consistency2

Enable computational efficiency for rich feature space
via kernel trick and dual parameter sparsity3

Perform well in practice4



Ongoing and Future Works

44



[1.] Taxonomy-based Classification

45

Adversarial Surrogate Loss for Taxonomy-based Classification

1 2 3 4 5 1 2 3 4

𝒮 = {1,2,3,5}

Example:

Nash equilibrium:

Analyze non-zero probability strategy of the adversary

5

ൗ1 2 ൗ1 2 1 1

ൗ1 2 0

ൗ3 2 2

0

2

ൗ4 7
ൗ3 7 1

ൗ8 7
0

3ൗ13
7

ൗ21
34 ൗ13

34

ൗ6 34 ൗ6 34 ൗ9 34 ൗ13
34

Adversary’s probability:



[1.] Taxonomy-based Classification → Algorithm
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Algorithm for finding the adversarial loss

Potentials:

1 2 3 4 5

Algorithm:

𝝍 = [0.1, 1.2, 0.5, 1.5, 0.7]

Sorted index for each non-leaf nodes:

1 2 3 4 5

[4, 2, 5, 3, 1]

[4, 5][2, 3, 1]

[4] [5]
[2, 1]

[3]

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Complexity

𝑂(𝑚𝑑2𝑘2)

𝑚 : max # of children

𝑑 : depth of the tree
𝑘 : # of class

Ref: LP complexity: 𝑂(𝑘3.5)

Completed:

- Game analysis
- Algorithm
- Complexity analysis
- Algorithm implementation

Future:
- Formal proof
- More efficient implementation
- Real data experiments



[2.] Sequence Prediction with Ordinal Classification Loss
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Adversarial Surrogate Loss for Sequence Prediction with Ordinal Classification Loss

Adversarial game over joint distributions:

Nash equilibrium:

(*) Formal proof is in on going work

Exists an equilibrium where only two strategies that has non-zero probability(*)

Exponential size of matrix 𝑳𝑥,𝜃

Can be solved using dynamic programming, complexity: 𝑂(𝑇 𝒴 4)

Double oracle (Li, et.al., 2016)
→ no polynomial convergence guarantee

Completed:

- Game analysis for ordinal classification loss
- Algorithm
- Complexity analysis
- Algorithm implementation

Future:
- Formal proof
- Real data experiments
- Extend analysis to other additive multiclass losses

(e.g. zero-one loss)



[3.] Adversarial Graphical Model
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Focus on tree structures with additive loss

Adversarial Game Over Marginal Distributions

Linear Programming
with 𝑂( 𝒴 2|𝐸|) variables

Complexity:
with 𝑂( 𝒴 7 𝐸 3.5)

𝒴 ∶ # classes
𝐸 ∶ # edges in the graph

Completed:

- Linear Programing Formulation
- Polynomial runtime 𝑂( 𝒴 7 𝐸 3.5)
- Naïve implementation

Future:

- Better ways to solve the LP
- Adversarial surrogate loss for graphical models
- Real data experiments



[*.] Timeline
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[1.] Taxonomy Classification

- Formal proof
- More efficient implementation
- Real data experiments

[2.] Adversarial Loss for Sequence Prediction

- Formal proof for ordinal classification case
- Real data experiments
- Extend analysis to other additive multiclass losses

[3.] Adversarial Graphical Models 
(with focus on tree structures)

- Better ways to solve the LP
- Adversarial surrogate loss for graphical models
- Real data experiments

0 3 6 9

months



Thank You
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