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Supervised Learning | Classification

Multiclass Classification
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Motivation




Empirical Risk Minimization (ERM)

* Assume a family of parametric hypothesis function f (e.g. linear discriminator)

* Find the hypothesis f* that minimize the empirical risk:
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loss(f (x4), i) = minly v p [loss(f(X),Y)]

Intractable optimization, non-convex, non-continuous

Convex surrogate loss need to be employed!

A desirable property of convex surrogates:

Fisher Consistency
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Under ideal condition: optimize surrogate = minimizes the loss metric

(given the true distribution and fully expressive model)




Two Main Approaches
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Probabilistic Approach 1 i

* Construct prediction probability model ool

0.4

* Employ the logistic loss surrogate

0.2

Logistic Regression, Conditional Random Fields (CRF) .

Maximum Margin Approach

* Maximize the margin that separates correct prediction from the incorrect one

* Employ the hinge loss surrogate

Support Vector Machine (SVM), Structured SVM

* Pictures are taken from MLPP book (Kevin Murphy)




Multiclass Classification | Logistic Regression vs SVM

Multiclass Logistic Regression Multiclass SVM

V Statistical guarantee of Fisher consistency \/ Computational efficiency

(minimizes the zero-one loss metric in the limit) (via the kernel trick & dual parameter sparsity)

x No dual parameter sparsity x Current multiclass SVM formulations:

- Lack Fisher consistency property, or

- Doesn’t perform well in practice




Structured Prediction| CRF vs Structured SVM

Conditional Random Fields (CRF) Structured SVM

V Statistical guarantee of Fisher consistency x No Fisher consistency guarantee

No easy mechanism to incorporate V Flexibility to incorporate customized
customized loss/performance metrics loss/performance metrics

Computation of the normalization term \/ Relatively more efficient in computation
may be intractable




New Learning Algorithms?

V Align better with the loss/performance metric

(by incorporating the metric into its learning objective)

V Provide Fisher consistency guarantee

V Computationally efficient

V Perform well in practice
How?

Robust adversarial learning approach

“What predictor best maximizes the performance metric
(or minimizes the loss metric) in the worst case given
the statistical summaries of the empirical distributions?”




Robust Adversarial Formulation




RObUSt Adve 'Sda I‘Ia| Form U |at|0n (Asif et.al, 2015; Grunwald & Dawid, 2004; Topsoe, 1979)

Original Loss Metric Approximate the loss > Empirical Risk Minimization
Non-convex, non-continuous with convex surrogates mfin Ex y.p [surrogate(f(X),Y)]
m}n EX,me’ [lOSS(f(X), Y)] g = argmax [;(x)

V)

Probabilistic prediction
P(Y|X)

Robust Adversarial Formulation
min [E 5.0 5 |loss(Y Y)] .
e X,Y~P;Y|X~P[ ) : _ . N [
P(Y|X min @ max Ey v 59ivwpvix. lossYY]
(Y|X) pIX) PVIX) XY P;Y|X~PY|X~P (Y, Y)

Evaluate against an adversary, s.t. ]Exmp;gqxwp[(ﬁ(x,?)] = Ex vy plo(X,Y)]

instead of using empirical data A

Adversary’s probabilistic prediction ] o
P(Y|X) Constraint the statistics of

¢ the adversary’s distribution
to match the empirical statistics

min @ max Ey v 5.9iv.wbv Nv[loss?,?]
BYIX) BIX) XY PY|X~P;Y|X~P ( )




Robust Adversarial Dual Formulation

i . min max Ey 5+ 5.5 5 [loss }A’,f’]
Primal: PR BUIX) | XPT XAEY X P (Y.Y)
subject to: Exwﬁ;ﬂxwﬁlﬁb(xa ?)] = LExy~pP [p(X,Y)]

l Lagrange multiplier, minimax duality

: inE - in Eoy sone. s [10ss(Y,Y) + 07 (6(X,Y) — d(X,Y
Dual:  mpBcyp s, i, P 105507, 7) 107 (0(X,¥) — 6(X, V)]

J

|
ERM with the adversarial surrogate loss (AL):

AL(x,y,0) = Pl?x%i) jrf}I(I;A/illjlc) B ¥ s [loss(Y, V) + 67 (6(x,Y) — o(x, y))]
Convexin 6
l Simplified notation

AL(f,y) = maxminp'™Lq + fTq — f,

qeA peA where: p; = P(Y = ilx)
¢ = PY =i|x)
fi = 0Tp(x, 1)




Multiclass Zero-One Classification

Based on:

Rizal Fathony, Anqi Liu, Kaiser Asif, Brian D. Ziebart. “Adversarial Multiclass Classification: A Risk Minimization Perspective”.
Advances in Neural Information Processing Systems 29 (NIPS), 2016.




Multiclass Classification | Zero-One Loss

Example: Digit Recognition Loss Metric: Zero-One Loss
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Loss Metric:
loss(3,y) = 1(¥ # y)
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Multiclass Classification | Related Works

Multiclass Support Vector Machine (SVM) Fisher Consistent? Perform well in
(Tewari and Bartlett, 2007) low dimensional feature?
(Liu, 2007) (Dogan et.al., 2016)

1. The WW Model (Weston et.al., 2002)
lossww (xi,4i) = > [1— (fy,(xi) = f3(xi))] ¢ x V
JF#Yi

Relative Margin Model

2. The CS Model (Crammer and Singer, 1999)

losscs (i, 41) = maux[1 = (y, (x0) = f(x0)], X v

Yi

Relative Margin Model

3. The LLW Model (Lee et.al., 2004) V x
IOSSLLW(Xinyi) — Z {1 + fj(f’(fi)Lr
J7Yi

with: Zj fj(Xi) =0
Absolute Margin Model




Adversarial Surrogate Loss for Zero-One Loss (AL° )

Adversarial Surrogate Loss Example for a four class classification
_ T Tey 0 1 1 1 —1] [0
AL(f,y) IaX IR P Lg+1f'q—f, 1 0 1 1 -1 0
1st block 1 1 0 1 -1 - 5 0
1 1 1 0 -1 31 0
N 1 0o 0 0 o0 ||*® 0
Convert to Linear Program o 1 0 o0 o 33 > 1
AL(f — fTq — 2nd block o o0 1 0 0 0
(fy) =maxv+fla—fy o TR o 0 o 1 o |l |g
. . : 1 1 1 1 0 1
st Loy zv Vi€ (k] grdblock | -1 —-1 -1 —1 0 —
q; = 0 Vi € [k] i
q'1 =1 .
Extreme points of the (bounded) polytope
Convex Polytope formed by the constraints There is always an optimal solution that
is an extreme point of the domain.
L -1 0
_J g q R ]o .
C= H A H = b, where A= 51, b= Computing AL =

17 0 —1 finding the best extreme point




AL%1| Convex Polytope

Convex Polytope of the AL%!

( L -1 0
_J|a q | T o0 lo
(C—<[v] A[@]Zb’ where A = X E b = 1

\ 17 0 —1

0 1 1 1

1 0 1 1
L= 1 1 0 1

1 110

Extreme points of the polytope

p={[s] =5 [T s] |0 s <)

e; is a vector with a single 1 at the j-th index,
and 0 elsewhere.

The Adversarial Surrogate Loss for
Zero-One Loss Metrics (AL%1)

max
SC[k], S#0 S|

L i fi"‘ S| —1
ALOI(f,y): 2 ies B — 1,

Computation of AL

- Sort f; in non-increasing order

- Incrementally add potentials to the set S,
until adding more potential decrease the loss value

O(klog k), where k is the number of classes




AL%1| Loss Surface

Binary Classification 7 /
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Fisher Consistency
Fisher Consistency Requirement in Classification

f* € F* £ argmin Ey|x~p [surrogatef(x, Y)] = argmax f*(x,y) C Y° £ argmin Ey x~plloss(y’,Y)]
f Yy Yy’

- P(Y|x) is the true conditional distribution Bayes risk minimizer
- f is optimized over all measurable functions

The property of the minimizer for AL
Loss reflective property of AL, for any loss metrics

fr(x,y) +loss(y®,y) = constant, i.e., isinvarianttoy

y‘is the Bayes risk minimizer.

!

argmax,, f*(x,y) = argming Lo .

!

Fisher consistent




AL%1 | Optimization
Primal

Stochastic sub-gradient descent

89 ALO_I(X:ya 9) = |,5‘_1*| EjeS* qb(x:]) - gb(x,y)

S* is the set that maximize AL%?

Kernel trick
input space » rich feature space
X; w(x;)

Compute the dot products

K(xi,x5) = w(x;) - w(x;)

Dual Optimization

Exp. number of constraints (primal) = Exp. number of variables (dual)

Constraint Generation Algorithm

Dual

Constrained Primal QP

1 T
minz 101 + 0306

subject to: & > A Vie{l,...n}ke{l,... 2l 1}

A enumerate all 2IYl — 1 possible values of AL for each sample

Dual QP Formulation

n 2Vl 1 m 2YI_q
méxxz Z Vik QG e — 3 Z Z ai’kaj’lmi.i’l]
i=1 k=1 ij=1 kl=1
2111
subject to ;5 > 0, Z ar=C,ie{l...,n}, ke {1,___,2|y| -1}
k=1
where:

dA; .
Ay = d—é’k ,and Vjk is the constant dart of A,

\ 4
Nir - Aji = cangn K (xi%x5)

for some constants C(i,k) and CG.D




AL’ | Experiments

Dataset properties and AL%?! constraints

Dataset Properties SUM ALY constraints added and active
#class  #train  # test  #feat. constraints Linear kernel Gauss. kernel
(1) iris 3 105 45 4 210 213 13 223 38
(2) glass 6 149 65 9 745 578 125 490 252
(3) redwine 10 1119 480 11 10071 5995 1681 3811 1783
(4) ecoli 8 235 101 7 1645 614 117 821 130
(5) vehicle 4 592 254 18 1776 1310 311 1201 248
(6) segment 7 1617 693 19 9702 4410 244 4312 469
(7) sat 7 4435 2000 36 26610 11721 1524 11860 6269
(8) optdigits 10 3823 1797 64 34407 7932 597 10072 2315
(9) pageblocks 5 3831 1642 10 15324 9459 427 9155 551
(10) libras 15 252 108 90 3528 1592 389 1165 353
(11) vertebral 3 217 93 6 434 344 78 342 86
(12) breasttissue 6 74 32 9 370 258 65 271 145




AL | Experiments | Results

Results for Linear Kernel and Gaussian Kernel

The mean (standard deviation) of the accuracy. Bold numbers: best or not significantly worse than the best

Linear Kernel

Gaussian Kernel

D
AL WW CS LILW ALY WW CS LIW
(1)  96.3 (3.1) 96.0 (2.6) 96.3 (2.4) 79.7 (5.5) 96.7 (2.4) 96.4 (2.4) 96.2 (2.3) 95.4 (2.1)
(2)  62.5(6.0) 62.2 (3.6) 62.5(3.9) 52.8(4.6) 69.5(4.2) 66.8 (4.3) 69.4 (4.8) 69.2 (4.4)
(3) 58.8(2.0) 59.1(1.9) 56.6(2.0) 57.7 (1.7) 63.3 (1.8) 64.2 (2.0) 64.2 (1.9) 64.7 (2.1)
(4)  86.2(22) 857 (25) 85.8(2.3) 74.1(3.3) 86.0(2.7) 84.9(24) 85.6(2.4) 86.0 (2.5)
(5) 78.8(22) 78.8 (1.7) 78.4(2.3) 69.8 (3.7) 84.3(2.5) 84.4(2.6) 838(2.3) 84.4(2.6)
(6) 94.9 (0.7)  94.9 (0.8) 95.2 (0.8) 75.8 (1.5) 96.5(0.6) 96.6 (0.5) 96.3 (0.6) 96.4 (0.5)
(7) 84.9 (0.7) 85.4 (0.7) 84.7 (0.7) 74.9 (0.9) 91.9 (0.5) 92.0 (0.6) 91.9 (0.5) 91.9 (0.4)
(8)  96.6 (0.6) 965 (0.7) 96.3(0.6) 76.2(2.2) 98.7(0.4) 988 (0.4) 988 (0.3) 98.9 (0.3)
(9) 96.0 (0.5)  96.1 (0.5) 96.3 (0.5) 92.5(0.8) 96.8 (0.5) 96.6 (0.4) 96.7 (0.4) 96.6 (0.4)
(10) 74.1(3.3) 72.0 (3.8) 71.3(4.3) 34.0(6.4) 83.6(3.8) 83.8(3.4) 85.0(3.9) 83.2(4.2)
(11) 85.5(2.9) 85.9 (2.7) 85.4(3.3) 79.8(5.6) 86.0(3.1) 85.3(29) 855 (3.3) 844 (2.7)
(12) 64.4 (7.1) 59.7 (7.8) 66.3 (6.9) 583 (8.1) 68.4(8.6) 68.1(6.5) 66.6(8.9) 68.0(7.2)
avg 81.59 81.02 81.25 68.80 85.14 84.82 85.00 84.93
HTy 0 6 8 0 9 6 6 7




Multiclass Zero-One Classification

Perform well in

Fisher Consistent? ) i 5
low dimensional feature-

1. The SVM WW Model (Weston et.al., 2002)
Relative Margin Model

2. The SVM CS Model (Crammer and Singer, 1999)
Relative Margin Model
Absolute Margin Model

4. The AL%! (Adversarial Surrogate Loss)
Relative Margin Model

X v
X v
3. The SVM LLW Model (Lee et.al., 2004) \/ x
v/ v/




General Multiclass Classification

1. Zero-One Loss Metric (NIPS 2016)
2. Ordinal Classification with the Absolute (NIPS 2017)
Other results Loss Metric

General Multiclass Classification

3. Ordinal Classification with the Squared =
Loss Metric

(JMLR submission

4. Weighted Multiclass Loss Metrics _ _
in preparation)

5. Classification with Abstention / Reject
Option I

24



Conditional Graphical Models

Based on:

Rizal Fathony, Ashkan Rezaei, Mohammad Bashiri, Xinhua Zhang, Brian D. Ziebart. “Distributionally Robust Graphical Models”. Advances in
Neural Information Processing Systems 31 (NIPS), 2018




Conditional Graphical Models

Some Popular Graphical Structure in Structured Prediction

Chain Structure Lattice Structure
® ® ® ® ® ® ® ¢ 4 ¢ ®
Activity Prediction, Sequence Tagging, NLP tasks: e.g. Named Entity Recognition
[ 4 0 @
Tree Structure
Parse Tree-Based NLP tasks: ¢ o . .
Semantic Role Labeling
and Sentiment Analysis
@ @ @ ®

Computer Vision Tasks:
e.g. Image Segmentation




Previous Approaches for Conditional Graphical Models
- Conditional Random Fields (CRF) Structured SVM (SSVM)
1 (Lafferty et. al., 2001) (Tsochantaridis et. al., 2005)

x No Fisher consistency guarantee
Based on Multiclass SVM-CS.
Not consistent for distribution with no majority label.

Fisher Consistent
Produce Bayes optimal prediction in ideal case.

No easy mechanism to incorporate V Align with the loss/performance metrics

customized loss/performance metrics The algorithm accept customized loss/performance
The algorithm optimized the conditional likelihood. metric in its optimization objective.
Loss/performance metric-based prediction

can be performed after learning process.




Adversarial Graphical Models (AGM)

Primal:

min - max By 5o pvixop [loss(Y,Y)] st Bx pvixop [‘I’(X,Y_)] — &
P(y|x) P(¥]x)

- Feature function ®(X,Y) is additively decomposed over cliques, ®(x,y) = X (X, y¥.)

- The loss metric is additively decomposed over each y; variables, loss(y,y) = Y.i-, loss(¥;, Vi)

- Focus on pairwise graphical models: interactions between label = edges in graphs

Dual:

min By . p max min Y P(y[x) P(y[x) | 7 loss (i, i)
Oc,0v P(y|x) P(y]x) v,y

0 - 3 pyer (0058, 55) — 0%, yi, y7)] + 0 - 227 [0(x, 31:) — d(x, y3)] }

0,: Lagrange multipliers for constraints with edge features
8,: Lagrange multipliers for constraints with node features




AGM | Marginal Formulation

Dual:
e forer PI?;EC)ZP(le) (¥1) [Zi loss (g, §i) Similar to CRF and SSVM:
S o General Graphical Models:
+0e - 3 jyer (065 i U5) — 0%, i, y5)] + 6 - 325 [D(x, i) — (x, i) } Intractable
Focus:
Graphs with low tree-width,
Dual | Marginal Formulation: e.g.: chain, tree.

Tractable optimization

min [E 5 max min [ TS x) P ();|x)loss (1,
Oc .0y X PP(Y|X}P(.Y|X) Za Zy"’ayw (yzl ) ( ‘ ) (y'b yz)

+ Z(z j)EE Zyt 74 yl: yjlx) [ ¢(x}ﬂia gj)] o Z(é,j)eE 0 - (b(xryip yj)
X0 Y, PR [0, - 6(x,5)] = 57 00 - 6%, 1) |,

Predictor’s probability P(¥|x} can be decomposed into node marginal probability P (¥;|x}
Adversary’s probability P(¥|x } can be decomposed into node and edge marginal probability P(;|x} and 15(51’1,5/}|x}




AGM | Optimization

Matrix Notation (Tree Structure AGM):

i ' I
000, Ex yp o m;nz [piLi(Qgt(i);il) + <th(%‘);i — ZLopt(iysir 2 0% )Wpt(i);'i;l>
bRt i

[
Qg — 20 (2, 08 wi)|

Sllbject to: Qgﬁ(pt(z)),pt(z)]‘ = th(i);i]_, V’l - {1, c. . ,n},
Runtime (for a single subgradient update):

Optimization Techniques: - Depends on the loss metric used
hasti 5 _ - For the additive zero-one loss metric (Hamming loss)
- Stochastic (sub)-gradient descent 0 (nlk log k + nk?)
(outer optimization for 6, and 6,,) k: # classes, n: # nodes,
- Dual decomposition (inner Q optimization) L: # iterations in dual decomposition
. . : CRF SSVM
- Discrete optimal transport solver (recoverin
p p ( g Q) 0(nk?) 0(nk?)

- Closed-form solution (inner p optimization)
General graphs low tree-width

O(nlwk™*V logk + nk?W+D)
n: # cliques, w: treewidth of the graph




AGM | Consistency

If the loss function is additive

AGM is consistent

when f is optimized over all measurable functions on the input space

AGM is also consistent

when f is optimized over a restricted set of functions:

all measurable function that are additive over the edge and node potentials.




AGM | Experiments (1)

Facial Emotion Intensity Prediction (Chain Structure, Labels with Ordinal Category)

- Each node: 3 class classification: neutral = 1< increasing = 2 < apex = 3

- 167 sequences

- Ordinal loss metrics: zero-one loss, absolute loss, and squared loss

- Weighted and unweighted. Weights reflect the focus of prediction (e.g. focus more on latest nodes)

Results:  Table 1: The average loss metrics for the emotion
intensity prediction. Bold numbers indicate the
best or not significantly worse than the best results
(paired t-test with a = 0.05).

Loss metrics AGM CRF SSVM
zero-one, unweighted 0.34  0.32 0.37

absolute, unweighted 033 0.34 0.40
quadratic, unweighted  0.38  0.38 0.40

zero-one, weighted 0.28 0.32 0.29
absolute, weighted 0.29 0.36 0.29
quadratic, weighted 0.36 040 0.33
average 0.33  0.35 0.35
# bold 4 2 2




AGM | Experiments (2)

Semantic Role Labeling (Tree Structure)

- Predict label of each node given known parse tree.

- Cost-sensitive loss metric is used reflect the importance of each label
- CoNLL 2005 dataset

Results:

Table 2: The average loss metrics for the semantic
role labeling task.

Loss metrics AGM CRF SSVM
cost-sensitive 1oss 0.14 0.19 0.14




Conditional Graphical Models

Performance-Aligned? Consistent?

Conditional Random Field (CRF) x V

(Lafferty et. al., 2001)
Structured SVM \/ x
(Tsochantaridis et. al., 2005)

Adversarial Graphical Models \/ \/

(our approach)




Bipartite Matching in Graphs

Based on:

Rizal Fathony*, Sima Behpour*, Xinhua Zhang, Brian D. Ziebart. “Efficient and Consistent Adversarial Bipartite Matching”. International
Conference on Machine Learning (ICML), 2018.




Bipartite Matching Task

Maximum weighted
bipartite matching:

max (7)) = max Z i (Tm;)

mell mell

Machine learning task:
Learn the appropriate weights ; (-
Objective:

Minimize a loss metric,
e.g., the Hamming loss

lossyam (7, ?r Z 1(m




Learning Bipartite Matching | Applications

@ Word alignment
(Taskar et. al., 2005; Pado & Lapta, 2006;
Mac-Cartney et. al., 2008)

naturlich ist das haus klein

N\ M\

course he house i small

@ Correspondence between images
(Belongie et. al., 2002; Dellaert et. al., 2003)

€ Learning to rank documents
(Dwork et. al., 2001; Le & Smola, 2007)

ws
- About 213,000 results (0.37 seconds)

Maximum Bipartite Matchlng GeeksforGeeks

hitps:/iwww. v
In a maximum matching, if any edge is adde d( it, it is no longer a matching. There

than one maximum matchings for a given Bipartite Gra| ph

OO0 e

POFICMSC 451: Maximum Bipartite Matching
https://iwww.cs.cmu.ed 1g.pdf v

CMSC 451: Maximum Bipartite Matching. Slides By: Carl Kiny g sford. Department of Computer

Science. University of Maryland, College Park. Based on Sectiot

Matching (graph theory) - Wikipedia
https://en.wikipedia.org/wiki/Matching_(graph_theory) v

Jump to In unweighted bipartite graphs - Matching problems are often concerned with bipartite ... a

i bipartite in a bipartite ...
Blossom algorithm - Hopcroft-Karp algorithm - Edge cover

A non-bipartite matching task can be converted to a bipartite matching problem




Previous Approaches for Bipartite Matching

CRE (petterson et. al., 2009; Volkovs & Zemel, 2012) Stru CtUFEd SV M (Tsochantaridis et. al., 2005)
P, = ! Y solved using constraint generation
() = Z—¢eXp ;%(7&) g g
n minE__ = [max loss(m, ") + o (n’ —W,D'}T]
Zy = ZHGKP (vi(ms)) = perm(M) b P L { ( | ) ( )} ( )
T P is the empirical distribution

whereM; ; = exp (i (j))

V Fisher Consistent V Computationally Efficient

Produce Bayes optimal prediction in ideal case Hungarian algorithm for computing the maximum
violated constraints

x Computationally intractable x No Fisher consistency guarantee

Normalization term requires matrix permanent Based on Multiclass SVM-CS
computation (a #P-hard problem). Not consistent for distribution with no majority label

An approximation is needed.




Adversarial Bipartite Matching (our approach)

Augmented Hamming loss matrix for n = 3 permutations

Primal: 7=123 | =132 |7 =213 | 7 =231 |7 =312 | 7 = 321
AIn;lIl max Emmﬁ’;ﬂmmﬁ;ﬂmw? DOSS (’ﬁ', ’f[‘” =123 | O+d13 | 24032 | 2+0m3 | 3+0am | 3+da2 | 2+ s
P(*/::\r|:z:) Pg\'“’) i § #o132 | 240 | O+ 0 | 3+0ms | 240m | 24 0m2 | 3+ O
s.t. Emi\f}s;ﬂmwg’\ Z bi (53, 'ﬁ'z) _ E(m,ﬂ)mf’ Z b (Qf:, ;) =213 | 240193 | 3+ | O0+0dns | 24021 | 24032 | 3+ 03
| =1 i=1 =231 | 3+d1es | 2+0d12 | 2+0m3 | O+dam | 3+dm2 | 2+ 03m
| S N =312 | 340193 | 2+0m | 2+0nz | 3+ | O+d30 | 2+ 05,
Preld ictor Ad\?E rsary =321 | 2+ b0y 3+ 0140 34 0913 2 + o3y 2 + 410 0+ 491
size: Intractable
n! xn! for modestly-sized n
Dual:

n
mink, 5 min max E; . p [1055(7?37?) +0-) (dilx, 7i) — ¢5i($,m))]
0T piala) P(rf) <
A A
| I

7'1'|:c~15

| I
Hamming loss Lagrangian term §




Polytope of the Permutation Mixtures

Dual:

T

max K. 5 c1p {Z I(my # m) +0 - Z (¢i(w, T:) — ¢i(z, ™))
i=1

min K 5 Mmin
~P 1
0 (,7) P(7|z) i1

P(it|z)

Marginal Distribution Matrices: Birkhoff — Von Neumann theorem:
Predictor
1 2 3 321 23

- - -_3 convex polytope whose points are

-
e

m | P11 | P12 | P1,3

P=— doubly stochastic matrix
T2 | P21 | P2,2 | P2,3
73 | P31 | P32 | P33 P1=P'1=Q1=Q"'1=1
pi; = P(@; = )) 312 132
reduce the space of optimization:
Adversary | 2
i 3 3 from 0(71.) to O(n )
LT | Q2 | qu3
Q=7 02,1 | 2,2 | q2,3 231 213
T3 | 431 | 932 | 43,3

q; =P (@ =)




Marginal Distribution Formulation

Dual:

mﬂin E(myop min max B 5o 5 {Z I(7; # m)+0- Z (hi(x,75) — qﬁ,-(:v,m))]
i=1

P(#|z) P(#|x) i—1

Marginal Formulation:

Rearrange the optimization order and add regularization and smoothing penalties

1l = 2 2 NIPE
maxmin > iy Qi = Y0, S0 06 Xi) — (Pi, Qi) + 4IP3 — 411Qull3 | + 311013

st.:Pi1=P/1=Q;1=Q/1=1, Vi

Optimization Techniques Used:

- Quter (Q) : projected Quasi-Newton (Schmidt, et.al., 2009)
- Inner (6) : closed-form solution

- Inner (P)  : projection to doubly-stochastic matrix

- Projection to doubly-stochastic matrix : ADMM




Consistency

Empirical Risk Perspective of Adversarial Bipartite Matching

mgin E zop [ALI}Zm(SB, ’J‘T)]

w|x~P

where: ALI}:"H(:E,W) £ min g]élaix)Eﬁmwp lloss(’fr,fr) + fo(z,70) — fo(z, ™)
P(#|z) P(#|z

it|z~P

ALPe™ is consistent

when f is optimized over all measurable functions on the input space (x, )

ALPe™ is also consistent

f is optimized over a restricted set of functions: f(x,m) = ; g;(x, ;)

when g is allowed to be optimized over all measurable functions on the individual input space (x, ;)




Experiments

Application: Video Tracking Public Benchmark Datasets
Table 3. Dataset properties
DATASET # ELEMENTS # EXAMPLES
TUD-CAMPUS 12 70
TUD-STADTMITTE 16 178
ETH-SUNNYDAY 18 353
ETH-BAHNHOF 34 999
ETH-PEDCROSS?2 30 836

Empirical runtime (until convergence)

Table 5. Running time (in seconds) of the model for various num-

ber of elements n with fixed number of samples (m = 50)
Adversarial. Marginal Formulation:

DATASET # ELEMENTS ADV MARG. SSVM grows (roughly) quadratically in n
CAMPUS 12 1.0 1.96 1.0 0.22

STADTMITTE 16 1.3 2.46 1.2 0.25

SUNNYDAY I8 1.5 2775 14 0.15 CRF: impractical even forn = 20
PEDCROSS2 30 25 8.18 42  0.26 (Petterson et. al., 2009)

BAHNHOF 34 2.8 9.79 5.0 0.31

relative: 12=1.0 relative: 1.96=1.0




Experiment Results

Table 1: The mean and standard deviation (in parenthesis) of the
average accuracy (1 - the average Hamming loss) for the adversarial
bipartite matching model compared with Structured-SVM.

6 pairs of dataset

T;g;zgg/ ADV. BIPARTITE MATCHING STRUCTURED SVM
Campus/ 0.662 0.662 Slgnlflcantly
STADTMITTE (0.08) (0.08)
outperforms SSVM
STADTMITTE/ 0.667 0.660 p
CAMPUS (0.11) (0.12)
BAHNHOF/ 0.754 0.729
SUNNYDAY (0.10) (0.15)
PEDCROSS2/ 0.750 0.736 2 pairS Of dataset
SUNNYDAY (0.10) (0.13)
SUNNYDAY/ 0.751 0.739 Compet|t|Ve with
BAHNHOF (0.18) (0.20) SSVM
PEDCROSS2/ 0.763 0.731
BAHNHOF (0.16) (0.21)
BAHNHOF/ 0.714 0.701
PEDCROSS2 (0.16) (0.18)
SUNNYDAY / 0.712 0.700
PEDCROSS2 (0.17) (0.18)




Bipartite Matching in Graphs

Efficient? Consistent? Perform well?

?

Conditional Random Field (CRF)

(Petterson et. al., 2009; Volkovs & Zemel, 2012) x V
Structured SVM \/ x —
(Tsochantaridis et. al., 2005)

Adversarial Bipartite Matching

(our approach)




Conclusion




Robust Adversarial Learning Algorithms

\/ Align better with the loss/performance metric

(by incorporating the metric into its learning objective)

V Provide Fisher consistency guarantee

\/ Computationally efficient

\/ Perform well in practice




Ongoing and Future Works




Ongoing and Future Works (1)

1. Fairness and Privacy in
Machine Learning

Important issues in automated
decision using ML algorithms.

Require the algorithm to produce fair

prediction / privacy-preserving prediction.

Our formulation only enforces constraints
on the adversary.

min max E - 5 x [loss(? ?)]
1 A1 XY ~P:V X~ PV | X~ P ’
PYIX) PYIX) oY~ PY X P

s.t. Exmﬁ,}?lxwﬁi[qb(xa 1}-)] — EX,YNﬁ[é(XE Y)]

Add fairness / privacy constraints to
the predictor?

2. Multivariate Performance Metrics

Many ML applications uses
multivariate performance metrics
to evaluate the prediction.

- Fﬁ-score
- Precision/Recall @k
- Area under ROC curve (AOC)

How will the optimization techniques change
to accommodate these metrics?

What if we have both structure in the label inter-
actions as well as structure in the loss metrics?

e.g. Bipartite Matching with Fl-score




Ongoing and Future Works (2)

3. Structured Prediction &
Graphical Models

4. Deep Learning

Deep learning has been
successfully applied to many
prediction problems.

More complex graphical structures
are popular in some applications,
e.g. computer vision.

Most of deep learning architectures
are not designed to optimize
customized loss metrics.

Exact learning algorithms for AGM
in this case may be intractable.

Can we develop learning algorithms for general

graphical models? How can the robust adversarial learning

approach help designing deep learning

What kind of approximation algorithms can be architectures?

applicable?




Ongoing and Future Works (3)

5. Multitask Learning

In some problems, learning multiple
tasks with different metrics
simultaneously is desirable.

What if we want to optimize multiple different
loss metrics simultaneously?

How will it change the optimization?

6. Statistical Theory of Loss Functions

In multiclass classification problem, both
AL%1 and SVM-LLW are Fisher consistent.
However, their performances are quite
different.

Is there any stronger statistical guarantee that
can separate high-performing Fisher consistent
algorithm from the low-performing ones?
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