
Rizal Fathony

Introduction to

Graph Machine Learning

*Some of the materials are modified from Juree Leskovec’s graph presentations

rizal@fathony.com

Rizal Fathony

Universitas Gadjah Mada | DIKE

Lead Data Scientist

Grab | Trust, Identity, and Safety

2021-Present | Indonesia

Visiting Lecturer

2022-Present | Yogyakarta, Indonesia

Post-Doctoral Researcher

Bosch | Bosch Center of Artificial Intelligence

2020-2021 | Pittsburgh, Pennsylvania, USA

Post-Doctoral Research Fellow

Carnegie Mellon University |Computer Science Department

2019-2021 | Pittsburgh, Pennsylvania, USA

Ph.D. in Computer Science

University of Illinois at Chicago

2014-2019 | Chicago, Illinois, USA

Master’s in Computer Science

University of Illinois at Chicago

2012-2014 | Chicago, Illinois, USA

Bachelor’s in Statistical Computing

Sekolah Tinggi Ilmu Statistik

2003-2007 | Jakarta, Indonesia

Education

What is a Graph?

Mathematical structure for
pairwise relations

Nodes

Edges

Why Graphs?

Graph is a general method
for describing and modeling
complex systems

Many Data are Graphs

Social Networks Health Records

Nodes: Person/Account

Edges: Friendship/Follows

Nodes: Patient, Medical Service

Edges: Treatment by Doctors

Bipartite Graph

https://brandblast.com/strategy/avatars-and-favicons/
https://www.nature.com/articles/s41598-021-85255-w.pdf

Many Data are Graphs

Financial Transactions E-Commerce Data

Nodes: Customer, Merchant

Edges: Transaction/Payment

Nodes: Person, Product, Credit Cards, …

Edges: Has Phone, Has Address, Orders, …

Directed Graph Heterogenous Graph

https://livebook.manning.com/book/graph-powered-machine-learning/chapter-3/v-8/
https://7wdata.be/data-analysis/fraud-detection-in-retail-with-graph-analysis/

Many Data are Graphs

Molecular Modeling Human Disease Network

Nodes: Atom

Edges: Chemical Bond

Nodes: Disease

Edges: Genetic Link

https://www.nature.com/articles/s41524-021-00543-3.pdf
https://studentwork.prattsi.org/infovis/labs/the-human-disease-network/

Task Example: Node Prediction

Input: Transactional Graph

Task: Find user that use stolen
credit card in the transactions

Input: Social Network

Task: Identify fake user with
influence power

https://livebook.manning.com/book/graph-powered-machine-learning/chapter-3/v-8/
https://brandblast.com/strategy/avatars-and-favicons/

Task Example: Edge Prediction

Input: Health Records Graph

Task: Predict if a patient need to see
a doctor for medical treatment

Input: Molecular Graph

Task: Predict how strong the chemical
bonds’ force for a given molecule

https://eng.uber.com/uber-eats-graph-learning/
https://www.nature.com/articles/s41524-021-00543-3.pdf

What’s Next?

Introduction1

Node Embedding3 Graph Neural Networks4

ML Algorithms2

Machine Learning Algorithms
From Classical to Graph ML

Classical Machine Learning Algorithms

Logistic Regression

Support Vector Machine

(Boosted) Decision Tree

K-Nearest Neighbors

Tabular Data

https://probml.github.io/pml-book/book1.html

Feature 1 Feature 2 Feature 3 Feature 4

Classical ML for Graph Data?

Graph

Classical ML for Graph Data?

Tabular

Information Loss

Neural Networks and Deep Learning

Multi Layer Perceptron (MLP) Residual Networks (ResNet)

https://www.ibm.com/cloud/learn/neural-networks
https://medium.com/analytics-vidhya/deep-residual-learning-for-image-recognition-resnet-94a9c71334c9

Multiple layers of learning

Capable to learn from “raw” data

Grids and Sequences

Convolutional Neural Networks (CNN) Recurrent Networks (RNN)

Images Text

Grids Sequences

https://www.researchgate.net/figure/Feed-forward-of-a-CNN-model-CONV-CONV-layers-are-the-main-components-of-a-CNN-model_fig1_305727136
https://kotakode.com/blogs/4437/Mengenal-LSTM-Networks---Part-3

Grid and Sequence as Graph

Grid Computation Flow Graph Computation Flow

https://arxiv.org/pdf/1901.00596.pdf

Node Embedding
Nodes + neighbors → numbers

Inspiration from word embedding: word2vec

https://towardsdatascience.com/creating-word-embeddings-coding-the-word2vec-algorithm-in-python-using-deep-learning-b337d0ba17a8
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Map words to numerical features

king – man + woman ≈ queen

walked – walking ≈ swam - swimming

word2vec training process:
predict the neighboring words

𝑥1𝑥1
𝑥2𝑥2

𝑥3𝑥3

similar word → similar values
preserve word associations

Node embedding algorithm

Map nodes in a graph to
numerical features (embedding)

similar nodes → similar embeddings

Graph Embedding
Classifier
(ML models)

http://snap.stanford.edu/proj/embeddings-www/

Node embedding components

1. Encoder 3. Optimization Algorithm

2. Similarity metric

http://snap.stanford.edu/proj/embeddings-www/

Need to define!

Input Graph
d-dimensional

embedding space

dot product between node
embeddings

Simple node embedding (example)

1. Encoder

http://snap.stanford.edu/proj/embeddings-www/

2. Similarity metric

3. Optimization Algorithm

“Shallow encoder”
Each node is assigned a unique embedding vector
(i.e., we directly optimize the embedding of each node)

used by most node embedding models

Key ingredient that differentiate node embedding methods

- Adjacency based similarity
if two nodes are connected via an edge = similar

node in the input graph

d-dimensional

embedding

Loss function:

(weighted)

adjacency matrix

for the graph

loss (what we

want to minimize)
sum over all node

pairs

embedding

similarity

Optimize with SGD!

Adjacency matrix

𝐀 𝐴𝑢,𝑣 = 1, if 𝑢 and 𝑣 are connected via an edge

𝐴𝑢,𝑣 = 0, otherwise

K-Hop Similarity

• Red: Target node
• Green: 1-hop neighbors

• A (i.e., adjacency matrix)
• Blue: 2-hop neighbors

• A2

• Purple: 3-hop neighbors
• A3

Objective:

Neighboring nodes achievable in k-hop
should have similar embedding

http://snap.stanford.edu/proj/embeddings-www/

adjacency matrix’s k-
th power = k-hop

Random Walk Similarity

Random walk: start from node 𝑢, repeatedly
jump (walk) to a neighboring node

𝑃𝑅(𝑣|𝑢): probability of visiting node 𝑣 from
random walks starting from node 𝑢

A random walk from 𝑢 to 𝑣

Embedding similarity should
approximate 𝑃𝑅(𝑣|𝑢)

Cosine similarity

http://snap.stanford.edu/proj/embeddings-www/

Random Walk Optimization

Objective

http://snap.stanford.edu/proj/embeddings-www/

maximize likelihood of
random walk co-occurrences

For each node 𝑢 collect 𝑁𝑅(𝑢), the set of nodes
visited on random walks starting from 𝑢.

Parameterize

use softmax

sum over all

nodes u
sum over nodes v
seen on random

walks starting from u

predicted probability of u
and v co-occuring on

random walk

Optimization: minimize ℒ

Nested sum over nodes gives O(|V|2) complexity!!

Approximate the normalization constant

Negative sampling

- Most pairs of nodes are not connected (negative sample)

- Instead of normalizing w.r.t. all nodes, just normalize
against 𝑘 random negative samples.

Why random walk?

Efficiency

http://snap.stanford.edu/proj/embeddings-www/

Expressiveness

Do not need to consider all
node pairs when training;

only need to consider pairs that
co-occur on random walks.

Flexible stochastic definition of
node similarity that

incorporates both local and
higher-order neighborhood

information.

node2vec: biased random walk similarity

Biased random walk to encourage:
local and global views

local microscopic view → breadth first search (BFS) walk
global macroscopic view → depth first search (DFS) walk

node2vec: Scalable Feature Learning for Networks

Aditya Grover
Stanford University

adityag@cs.stanford.edu

Jure Leskovec
Stanford University

jure@cs.stanford.edu

ABSTRACT

Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-

search in thebroader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features

themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Herewepropose node2vec, an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec, we

learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-

work neighborhoods of nodes. Wedefineaflexiblenotion of node’s
network neighborhood and design a biased random walk proce-

dure, which efficiently exploresdiverseneighborhoods and leadsto
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we

demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-

tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning

state-of-the-art task-independent node representations in complex
networks.

Categor ies and Subject Descr iptors: H.2.8 [Database Manage-

ment]: Database applications—Data mining; I.2.6 [Ar tificial In-
telligence]: Learning

General Terms: Algorithms; Experimentation.

Keywords: Information networks, Feature learning, Node embed-

dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of

nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-

protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should

have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us

discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that

one has to construct a feature vector representation for the nodes

u

s3

s2
s1

s4

s8

s9

s6

s7

s5

BFS

DFS

Figure1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if onediscounts

the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different

prediction tasks.
An alternative approach is to use data to learn feature represen-

tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of

thespectrum, onecould directly aim to findafeaturerepresentation
that optimizesperformanceof adownstream prediction task. While

this supervised procedure results in good accuracy, it comes at the
cost of high training timecomplexity dueto ablowup in thenumber

of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-

stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-

tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in

predictiveaccuracy [25, 27].
However, current techniques fail to satisfactorily defineand opti-

mizeareasonable objectiverequired for scalableunsupervised fea-
ture learning in networks. Classic approaches based on linear and

non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-

sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world

networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networksprovidean alternativeapproach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns

unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in

other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,

42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to thesamecommunity exhibit homophily, while thehub nodes

u and s6 in the two communities are structurally equivalent. Real-

http://snap.stanford.edu/proj/embeddings-www/

𝑁𝐵𝐹𝑆 𝑢 = { 𝑠1, 𝑠2, 𝑠3}

𝑁𝐷𝐹𝑆 𝑢 = { 𝑠4, 𝑠5, 𝑠6}

Local microscopic view

Global macroscopic view

Application: Health Records

https://www.nature.com/articles/s41598-021-85255-w.pdf
https://arxiv.org/abs/1906.05017

node2vec
ME2vec

Leveraging graph-based hierarchical medical entity embedding for healthcare applications
Tong Wu et.al (2021) [Nature Scientific Reports | Advanced Analytics, IQVIA Inc]

patient – medical service graph
patient – doctor graph

1. Predict patient diagnostic [node classification]
2. Predict if patient need to see a doctor [link prediction]
3. Readmission prediction [node classification]

Prediction
Tasks:

node2vec, ME2vec

patient, medical service,
doctor embedding

Logistic Regression

Application: PayPal’s Collusion Fraud Prevention

https://www.slideshare.net/Hadoop_Summit/graph-representation-learning-to-prevent-payment-collusion-fraud
https://www.h2o.ai/content/dam/h2o/en/marketing/documents/2020/01/PayPal-Customer-Case-Study-rnd2-1.pdf

Thank You

	Cover
	Slide 1: Introduction to Graph Machine Learning
	Slide 2

	Graph
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

	Machine Learning
	Slide 11: Machine Learning Algorithms
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

	Node Embedding
	Slide 18: Node Embedding
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

	Thanks
	Slide 30: Thank You

