Introduction to Graph Machine Learning

Rizal Fathony rizal@fathony.com

*Some of the materials are modified from Juree Leskovec's graph presentations

Rizal Fathony

Lead Data Scientist Grab | Trust, Identity, and Safety 2021-Present | Indonesia

Visiting Lecturer Universitas Gadjah Mada | DIKE 2022-Present | Yogyakarta, Indonesia

Post-Doctoral Researcher

Bosch | Bosch Center of Artificial Intelligence 2020-2021 | Pittsburgh, Pennsylvania, USA

Post-Doctoral Research Fellow Carnegie Mellon University |Computer Science Department 2019-2021 | Pittsburgh, Pennsylvania, USA

Education

Ph.D. in Computer ScienceUniversity of Illinois at Chicago2014-2019 | Chicago, Illinois, USA

Master's in Computer Science University of Illinois at Chicago 2012-2014 | Chicago, Illinois, USA

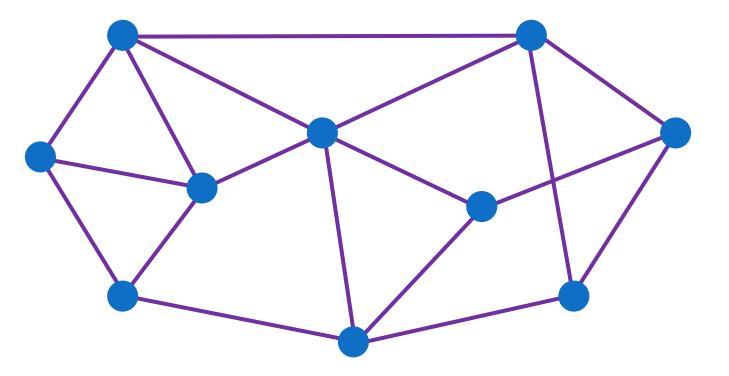
Bachelor's in Statistical Computing Sekolah Tinggi Ilmu Statistik 2003-2007 | Jakarta, Indonesia

What is a Graph?

Mathematical structure for pairwise relations

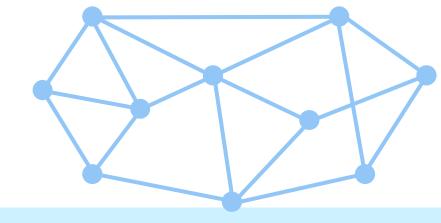
Nodes

Edges



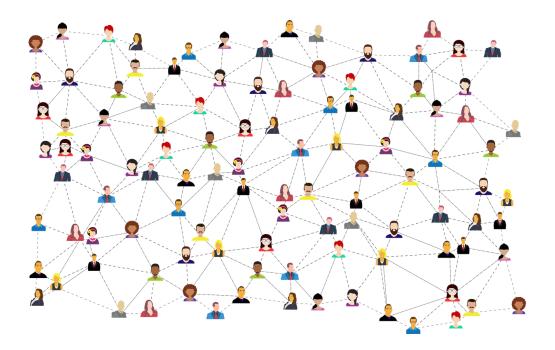
3

Why Graphs?

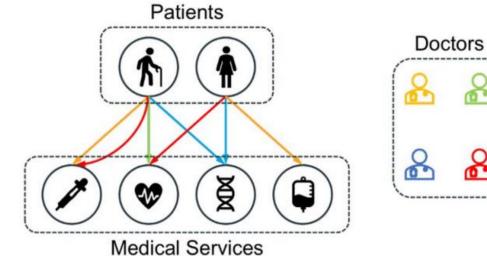


Graph is a general method for describing and modeling complex systems

Many Data are Graphs



Social Networks Nodes: Person/Account Edges: Friendship/Follows



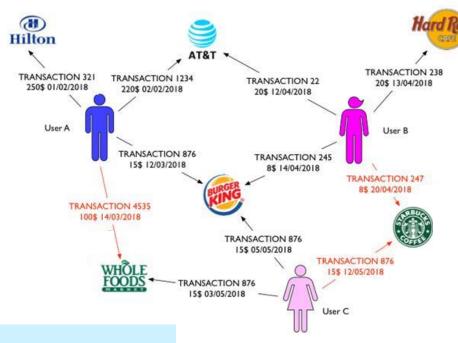
Bipartite Graph

Health Records

Nodes: Patient, Medical Service

Edges: Treatment by Doctors

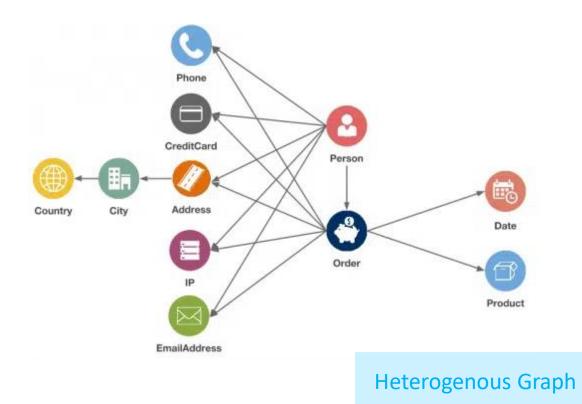
Many Data are Graphs



Directed Graph

Financial Transactions Nodes: Customer, Merchant Edges: Transaction/Payment

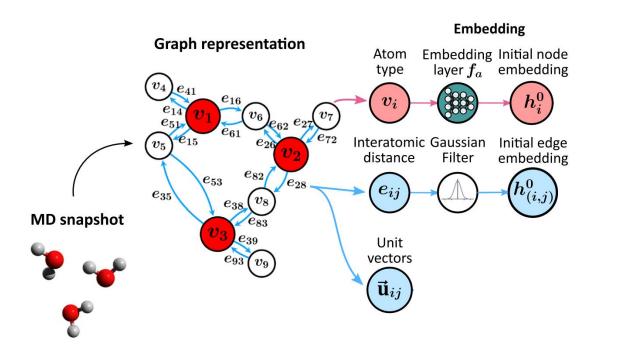
https://livebook.manning.com/book/graph-powered-machine-learning/chapter-3/v-8/ https://7wdata.be/data-analysis/fraud-detection-in-retail-with-graph-analysis/



E-Commerce Data

Nodes: Person, Product, Credit Cards, ... Edges: Has Phone, Has Address, Orders, ...

Many Data are Graphs

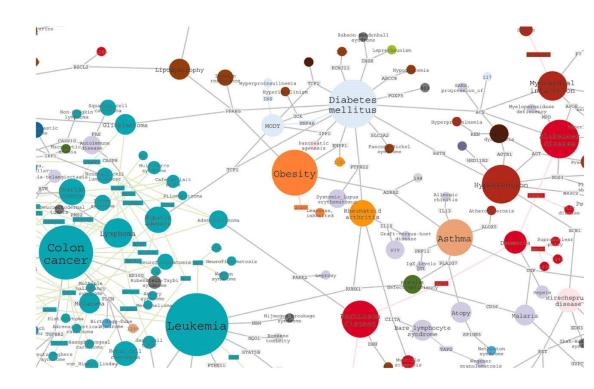


Molecular Modeling

Nodes: Atom

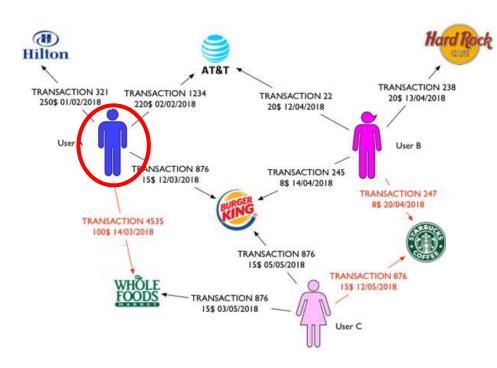
Edges: Chemical Bond

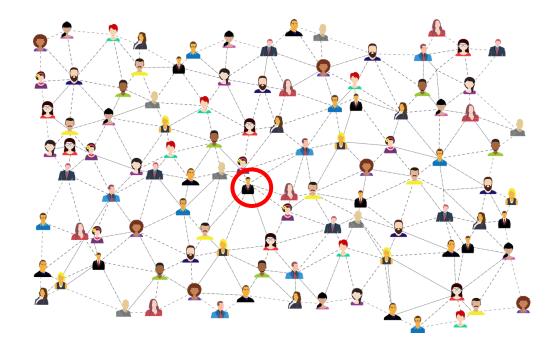
https://www.nature.com/articles/s41524-021-00543-3.pdf https://studentwork.prattsi.org/infovis/labs/the-human-disease-network/



Human Disease Network Nodes: Disease Edges: Genetic Link

Task Example: Node Prediction





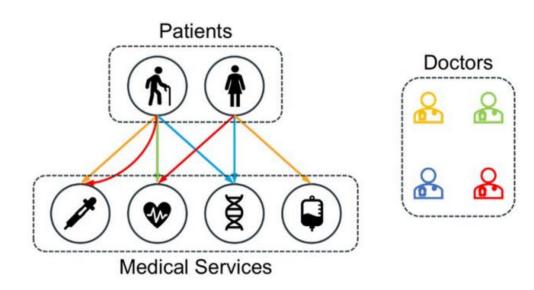
Input: Transactional Graph Task: Find user that use stolen credit card in the transactions

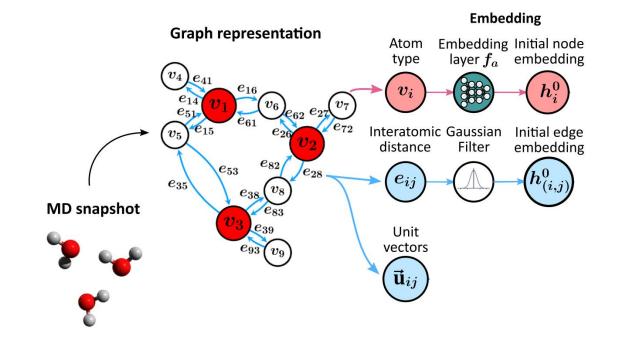
Input: Social Network Task: Identify fake user with influence power

8

https://livebook.manning.com/book/graph-powered-machine-learning/chapter-3/v-8/ https://brandblast.com/strategy/avatars-and-favicons/

Task Example: Edge Prediction





Input: Health Records Graph Task: Predict if a patient need to see a doctor for medical treatment

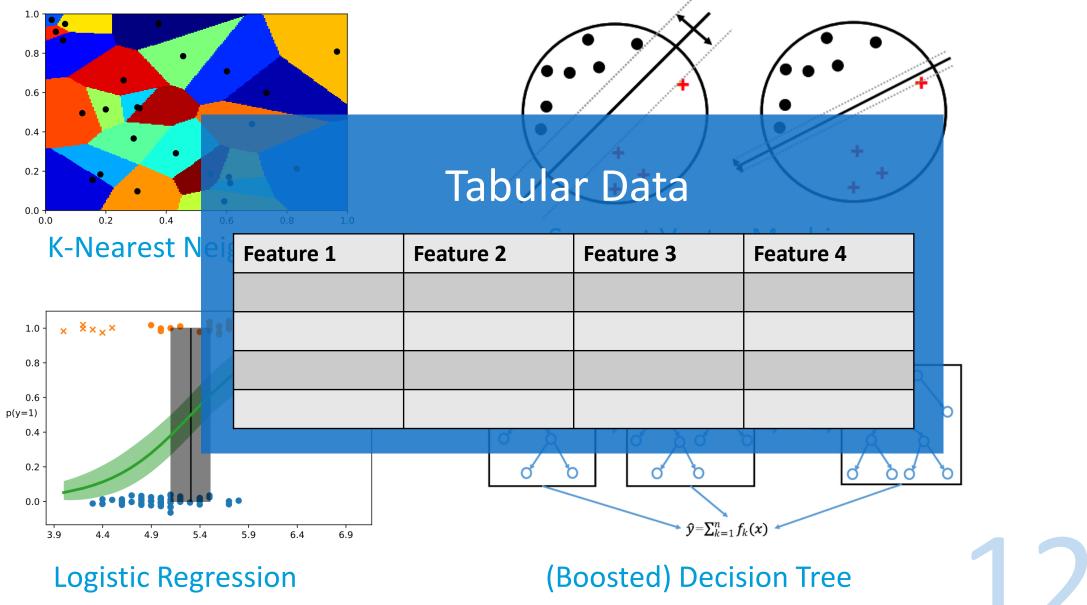
Input: Molecular Graph

Task: Predict how strong the chemical bonds' force for a given molecule

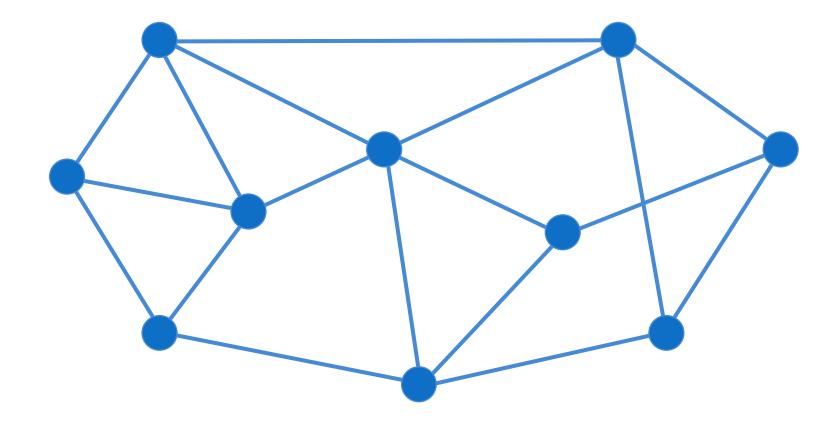
Machine Learning Algorithms

From Classical to Graph ML

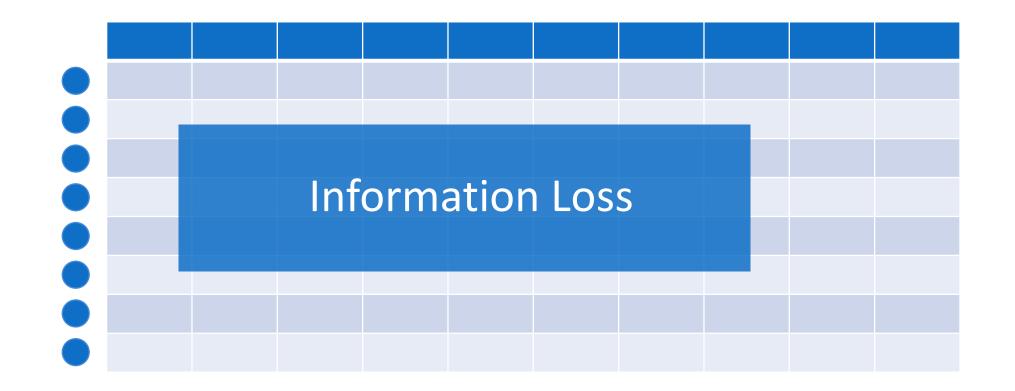
Classical Machine Learning Algorithms



Classical ML for Graph Data?



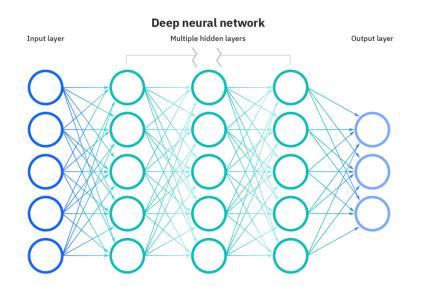
Classical ML for Graph Data?

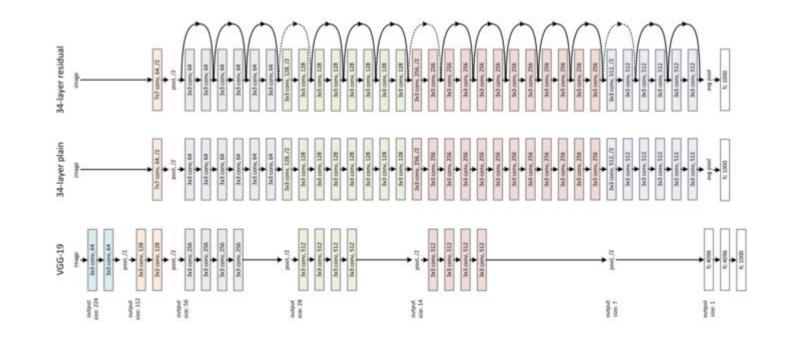


Tabular

Neural Networks and Deep Learning

Multiple layers of learning





Multi Layer Perceptron (MLP)

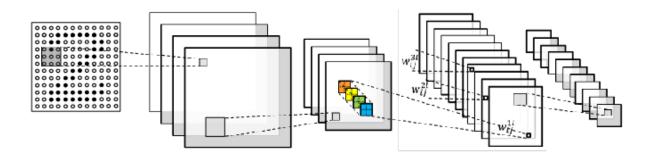
Residual Networks (ResNet)

Capable to learn from "raw" data

https://www.ibm.com/cloud/learn/neural-networks https://medium.com/analytics-vidhya/deep-residual-learning-for-image-recognition-resnet-94a9c71334

Grids and Sequences

Grids

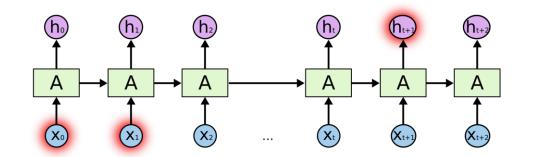


Convolutional Neural Networks (CNN)

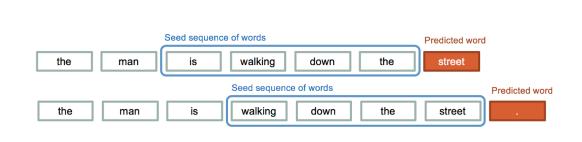
Images

https://www.researchgate.net/figure/Feed-forward-of-a-CNN-model-CONV-CONV-layers-are-the-main-components-of-a-CNN-model_fig1_305727136 https://kotakode.com/blogs/4437/Mengenal-LSTM-Networks---Part-3

Sequences

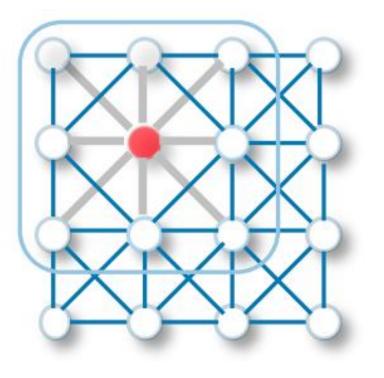


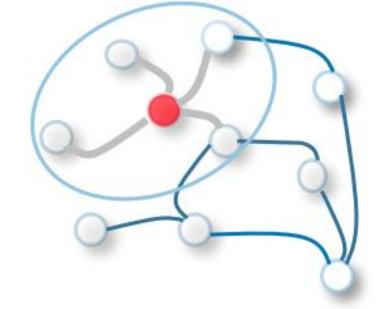
Recurrent Networks (RNN)



Text

Grid and Sequence as Graph





Grid Computation Flow

Graph Computation Flow

https://arxiv.org/pdf/1901.00596.pdf

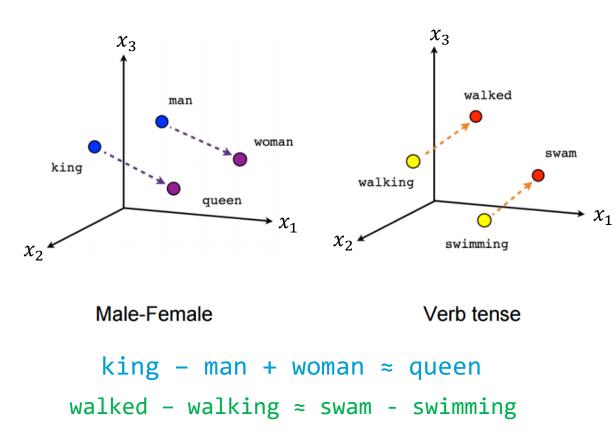
Node Embedding

Nodes + neighbors \rightarrow numbers

Inspiration from word embedding: word2vec

Map words to numerical features

similar word \rightarrow similar values preserve word associations



word2vec training process:

predict the neighboring words

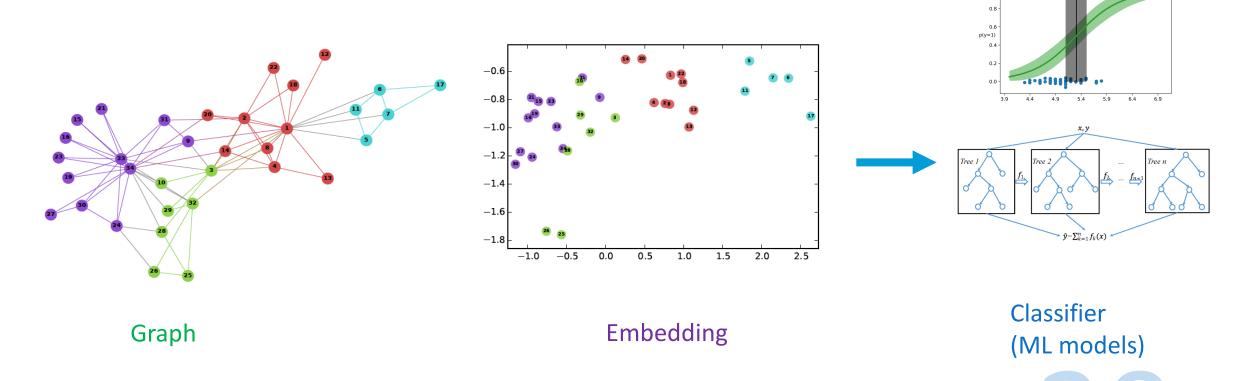
Source Text	Training Samples
The quick brown fox jumps over the lazy dog. \Longrightarrow	(the, quick) (the, brown)
The quick brown fox jumps over the lazy dog. \Longrightarrow	(quick, the) (quick, brown) (quick, fox)
The quick brown fox jumps over the lazy dog. \Longrightarrow	(brown, the) (brown, quick) (brown, fox) (brown, jumps)
The quick brown fox jumps over the lazy dog. \implies	(fox, quick) (fox, brown) (fox, jumps) (fox, over)

tps://towardsdatascience.com/creating-word-embeddings-coding-the-word2vec-algorithm-in-python-using-deep-learning-b337d0ba17a8 tp://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Node embedding algorithm

Map nodes in a graph to **numerical** features (embedding)

similar nodes → similar embeddings

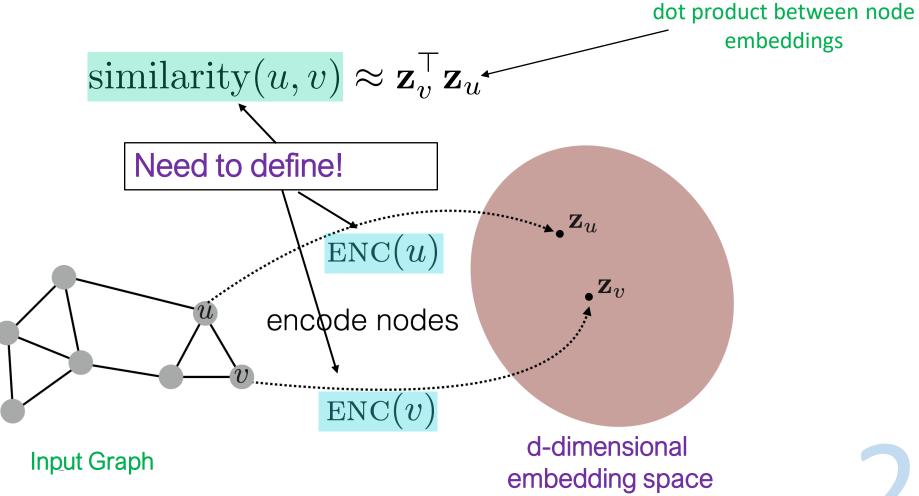


Node embedding components

3. Optimization Algorithm

2. Similarity metric

1. Encoder



Simple node embedding (example)

1. Encoder

"Shallow encoder"

Each node is assigned a unique embedding vector (i.e., we directly optimize the embedding of each node)

used by most node embedding models

 $\operatorname{ENC}(v) = \mathbf{z}_v \qquad \begin{array}{c} \operatorname{d-dimensional} \\ \operatorname{embedding} \\ \operatorname{node in the input graph} \end{array}$

2. Similarity metric

Key ingredient that differentiate node embedding methods

- Adjacency based similarity

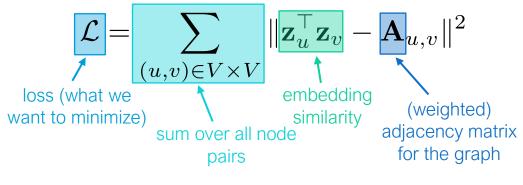
if two nodes are connected via an edge = similar

Adjacency matrix

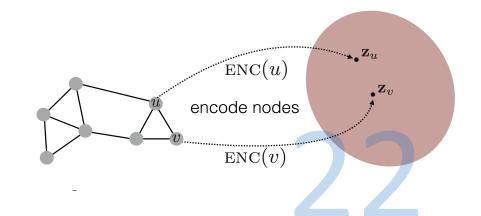
 $A \quad \begin{array}{l} A_{u,v} = 1, \text{ if } u \text{ and } v \text{ are connected via an edge} \\ A_{u,v} = 0, \text{ otherwise} \end{array}$

3. Optimization Algorithm

Loss function:

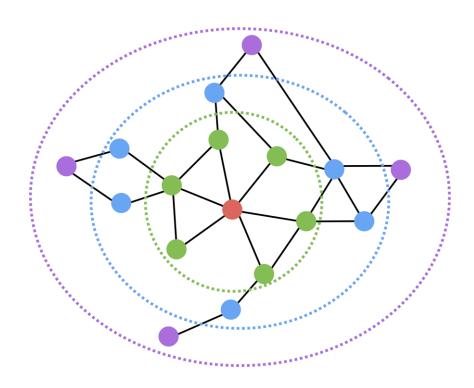


Optimize with SGD!



K-Hop Similarity

Neighboring nodes achievable in k-hop should have similar embedding



- Red: Target node
- Green: 1-hop neighbors
 - A (i.e., adjacency matrix)
- Blue: 2-hop neighbors
 - A²
- Purple: 3-hop neighbors
 - A³

Objective:

$$\mathcal{L} = \sum_{(u,v)\in V\times V} \|\mathbf{z}_u^\top \mathbf{z}_v - \mathbf{A}_{u,v}^k\|^2$$

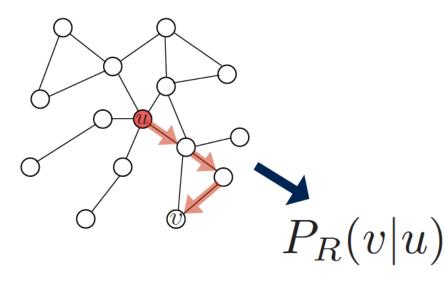
adjacency matrix's kth power = k-hop

Theorem: Raising an adjacency matrix A of simple graph G to the n-th power gives the number of n-length walks between two vertices v_i , v_j of G in the resulting matrix.

Random Walk Similarity

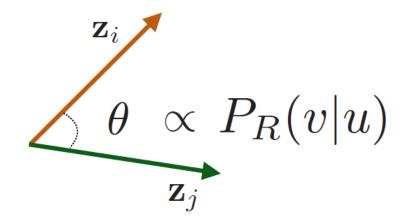
Random walk: start from node *u*, repeatedly jump (walk) to a neighboring node

 $P_R(v|u)$: probability of visiting node v from random walks starting from node u



A random walk from u to v

Embedding similarity should approximate $P_R(v|u)$



Cosine similarity

Random Walk Optimization

Objective

maximize likelihood of random walk co-occurrences

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

For each node u collect $N_R(u)$, the set of nodes visited on random walks starting from u.

Parameterize

use softmax

$$P(v|\mathbf{z}_u) = \frac{\exp(\mathbf{z}_u^{\top} \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^{\top} \mathbf{z}_n)}$$

Optimization: minimize $\boldsymbol{\mathcal{L}}$

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log \left(\frac{\exp(\mathbf{z}_u^\top \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^\top \mathbf{z}_n)} \right)$$
sum over all nodes *u* sum over nodes *v* seen on random walks starting from *u* predicted probability of *u* and *v* co-occuring on random walk starting from *u* Nested sum over nodes gives O(|V|²) complexity!!

Approximate the normalization constant

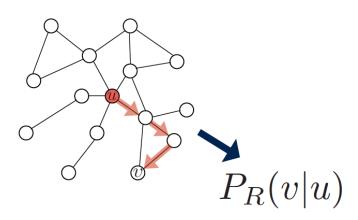
Negative sampling

- Most pairs of nodes are not connected (negative sample)
- Instead of normalizing w.r.t. all nodes, just normalize against k random negative samples.

Why random walk?

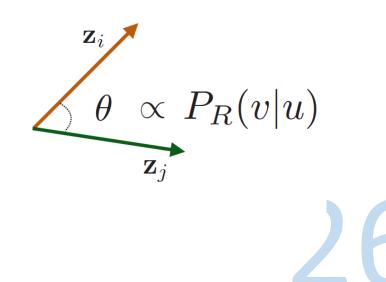
Efficiency

Do not need to consider all node pairs when training; only need to consider pairs that co-occur on random walks.



Expressiveness

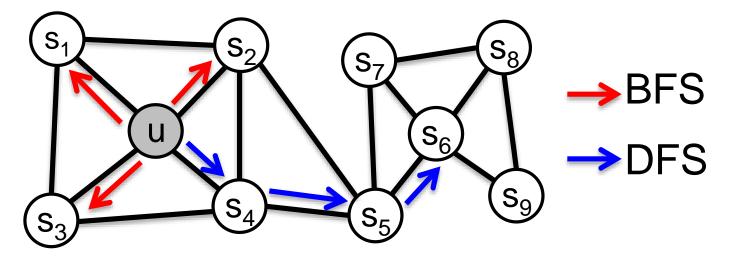
Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information.



node2vec: biased random walk similarity

Biased random walk to encourage: **local** and **global** views

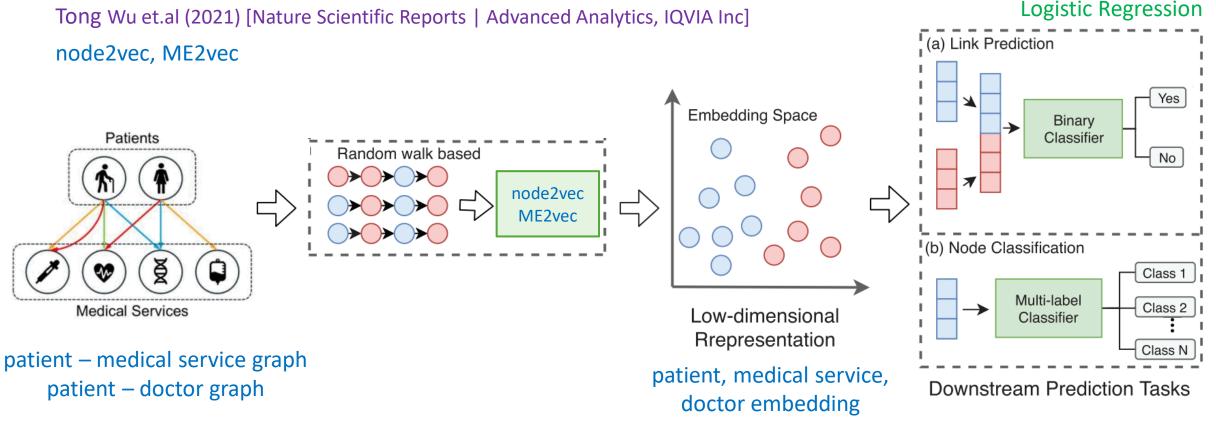
local microscopic view \rightarrow breadth first search (BFS) walk global macroscopic view \rightarrow depth first search (DFS) walk



 $N_{BFS}(u) = \{ s_1, s_2, s_3 \}$ $N_{DFS}(u) = \{ s_4, s_5, s_6 \}$

Local microscopic view Global macroscopic view

Application: Health Records



1. Predict patient diagnostic [node classification]

3. Readmission prediction [node classification]

2. Predict if patient need to see a doctor [link prediction]

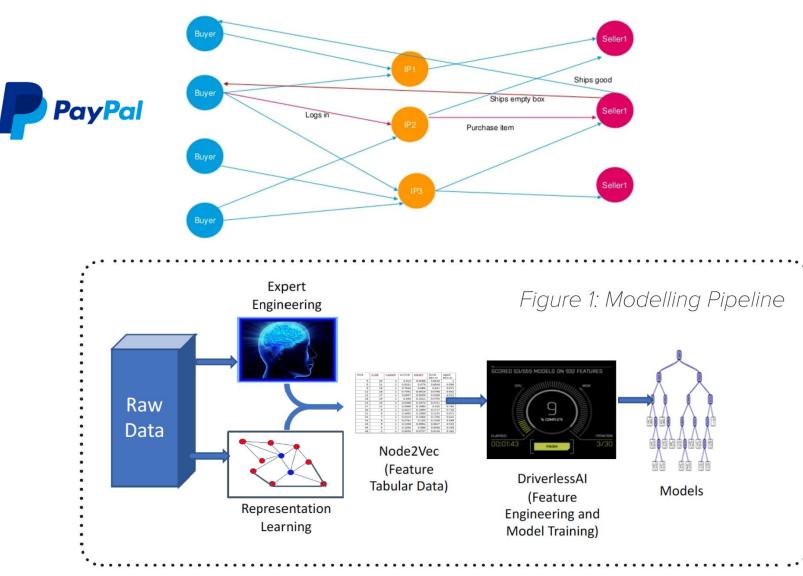
Leveraging graph-based hierarchical medical entity embedding for healthcare applications Tong Wu et.al (2021) [Nature Scientific Reports | Advanced Analytics, IQVIA Inc]

Prediction

Tasks:

https://www.nature.com/articles/s41598-021-85255-w.pdf https://arxiv.org/abs/1906.05017

Application: PayPal's Collusion Fraud Prevention



DATA

- Training Data:
- Subset of one year's transactions.
- 1.5 billion edges, .5 million nodes.

Test Data:3 months

Number of Features: • 400-600

https://www.slideshare.net/Hadoop_Summit/graph-representation-learning-to-prevent-payment-collusion-fraud https://www.h2o.ai/content/dam/h2o/en/marketing/documents/2020/01/PayPal-Customer-Case-Study-rnd2-1.pdf

