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What is a Graph?

Mathematical structure for 
pairwise relations

Nodes

Edges



Why Graphs?

Graph is a general method 
for describing and modeling 
complex systems 



Many Data are Graphs

Social Networks Health Records

Nodes: Person/Account

Edges: Friendship/Follows 

Nodes: Patient, Medical Service

Edges: Treatment by Doctors

Bipartite Graph

https://brandblast.com/strategy/avatars-and-favicons/
https://www.nature.com/articles/s41598-021-85255-w.pdf



Many Data are Graphs

Financial Transactions E-Commerce Data

Nodes: Customer, Merchant

Edges: Transaction/Payment 

Nodes: Person, Product, Credit Cards, …

Edges: Has Phone, Has Address, Orders, … 

Directed Graph Heterogenous Graph

https://livebook.manning.com/book/graph-powered-machine-learning/chapter-3/v-8/
https://7wdata.be/data-analysis/fraud-detection-in-retail-with-graph-analysis/



Many Data are Graphs

Molecular Modeling Human Disease Network

Nodes: Atom

Edges: Chemical Bond 

Nodes: Disease

Edges: Genetic Link

https://www.nature.com/articles/s41524-021-00543-3.pdf
https://studentwork.prattsi.org/infovis/labs/the-human-disease-network/



Task Example: Node Prediction 

Input: Transactional Graph

Task: Find user that use stolen
credit card in the transactions 

Input: Social Network

Task: Identify fake user with 
influence power

https://livebook.manning.com/book/graph-powered-machine-learning/chapter-3/v-8/
https://brandblast.com/strategy/avatars-and-favicons/



Task Example: Edge Prediction 

Input: Health Records Graph

Task: Predict if a patient need to see
a doctor for medical treatment

Input: Molecular Graph

Task: Predict how strong the chemical
bonds’ force for a given molecule

https://eng.uber.com/uber-eats-graph-learning/
https://www.nature.com/articles/s41524-021-00543-3.pdf



What’s Next?

Introduction1

Node Embedding3 Graph Neural Networks4

ML Algorithms2



Machine Learning Algorithms
From Classical to Graph ML



Classical Machine Learning Algorithms 

Logistic Regression

Support Vector Machine

(Boosted) Decision Tree

K-Nearest Neighbors

Tabular Data

https://probml.github.io/pml-book/book1.html

Feature 1 Feature 2 Feature 3 Feature 4



Classical ML for Graph Data?

Graph



Classical ML for Graph Data?

Tabular

Information Loss



Neural Networks and Deep Learning 

Multi Layer Perceptron (MLP) Residual Networks (ResNet)

https://www.ibm.com/cloud/learn/neural-networks
https://medium.com/analytics-vidhya/deep-residual-learning-for-image-recognition-resnet-94a9c71334c9

Multiple layers of learning

Capable to learn from “raw” data



Grids and Sequences

Convolutional Neural Networks (CNN) Recurrent Networks (RNN)

Images Text

Grids Sequences

https://www.researchgate.net/figure/Feed-forward-of-a-CNN-model-CONV-CONV-layers-are-the-main-components-of-a-CNN-model_fig1_305727136
https://kotakode.com/blogs/4437/Mengenal-LSTM-Networks---Part-3



Grid and Sequence as Graph

Grid Computation Flow Graph Computation Flow

https://arxiv.org/pdf/1901.00596.pdf



Node Embedding
Nodes + neighbors → numbers



Inspiration from word embedding: word2vec

https://towardsdatascience.com/creating-word-embeddings-coding-the-word2vec-algorithm-in-python-using-deep-learning-b337d0ba17a8
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Map words to numerical features

king – man + woman ≈ queen

walked – walking ≈ swam - swimming

word2vec training process:
predict the neighboring words

𝑥1𝑥1
𝑥2𝑥2

𝑥3𝑥3

similar word → similar values
preserve word associations



Node embedding algorithm

Map nodes in a graph to 
numerical features (embedding)

similar nodes → similar embeddings

Graph Embedding
Classifier
(ML models)

http://snap.stanford.edu/proj/embeddings-www/



Node embedding components

1. Encoder 3. Optimization Algorithm

2. Similarity metric

http://snap.stanford.edu/proj/embeddings-www/

Need to define!

Input Graph
d-dimensional 

embedding space

dot product between node 
embeddings



Simple node embedding (example)

1. Encoder

http://snap.stanford.edu/proj/embeddings-www/

2. Similarity metric

3. Optimization Algorithm

“Shallow encoder”
Each node is assigned a unique embedding vector
(i.e., we directly optimize the embedding of each node)

used by most node embedding models

Key ingredient that differentiate node embedding methods 

- Adjacency based similarity
if two nodes are connected via an edge = similar

node in the input graph

d-dimensional 

embedding

Loss function:

(weighted) 

adjacency matrix 

for the graph

loss (what we 

want to minimize)
sum over all node 

pairs 

embedding 

similarity

Optimize with SGD!

Adjacency matrix

𝐀 𝐴𝑢,𝑣 = 1, if 𝑢 and 𝑣 are connected via an edge

𝐴𝑢,𝑣 = 0, otherwise



K-Hop Similarity

• Red: Target node
• Green: 1-hop neighbors

• A (i.e., adjacency matrix)
• Blue: 2-hop neighbors

• A2

• Purple: 3-hop neighbors
• A3

Objective:

Neighboring nodes achievable in k-hop
should have similar embedding

http://snap.stanford.edu/proj/embeddings-www/

adjacency matrix’s k-
th power = k-hop



Random Walk Similarity

Random walk: start from node 𝑢, repeatedly
jump (walk) to a neighboring node

𝑃𝑅(𝑣|𝑢): probability of visiting node 𝑣 from 
random walks starting from node 𝑢

A random walk from 𝑢 to 𝑣

Embedding similarity should 
approximate 𝑃𝑅(𝑣|𝑢)

Cosine similarity

http://snap.stanford.edu/proj/embeddings-www/



Random Walk Optimization

Objective

http://snap.stanford.edu/proj/embeddings-www/

maximize likelihood of 
random walk co-occurrences

For each node 𝑢 collect 𝑁𝑅(𝑢), the set of nodes 
visited on random walks starting from 𝑢. 

Parameterize

use softmax

sum over all 

nodes u
sum over nodes v 
seen on random 

walks starting from u

predicted probability of u
and v co-occuring on 

random walk

Optimization: minimize ℒ

Nested sum over nodes gives O(|V|2) complexity!!

Approximate the normalization constant 

Negative sampling

- Most pairs of nodes are not connected (negative sample) 

- Instead of normalizing w.r.t. all nodes, just normalize 
against 𝑘 random negative samples.



Why random walk?

Efficiency

http://snap.stanford.edu/proj/embeddings-www/

Expressiveness

Do not need to consider all 
node pairs when training; 

only need to consider pairs that 
co-occur on random walks.

Flexible stochastic definition of 
node similarity that 

incorporates both local and 
higher-order neighborhood 

information.



node2vec: biased random walk similarity

Biased random walk to encourage:
local and global views

local microscopic view      → breadth first search (BFS) walk
global macroscopic view  → depth first search (DFS) walk

node2vec: Scalable Feature Learning for Networks

Aditya Grover
Stanford University

adityag@cs.stanford.edu

Jure Leskovec
Stanford University

jure@cs.stanford.edu

ABSTRACT

Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-

search in thebroader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features

themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Herewepropose node2vec, an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec, we

learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-

work neighborhoods of nodes. Wedefineaflexiblenotion of node’s
network neighborhood and design a biased random walk proce-

dure, which efficiently exploresdiverseneighborhoods and leadsto
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we

demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-

tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning

state-of-the-art task-independent node representations in complex
networks.

Categor ies and Subject Descr iptors: H.2.8 [Database Manage-

ment]: Database applications—Data mining; I.2.6 [Ar tificial In-
telligence]: Learning

General Terms: Algorithms; Experimentation.

Keywords: Information networks, Feature learning, Node embed-

dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of

nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-

protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should

have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us

discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that

one has to construct a feature vector representation for the nodes

u 

s3 

s2 
s1 

s4 

s8 

s9 

s6 

s7 

s5 

BFS 

DFS 

Figure1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if onediscounts

the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different

prediction tasks.
An alternative approach is to use data to learn feature represen-

tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of

thespectrum, onecould directly aim to findafeaturerepresentation
that optimizesperformanceof adownstream prediction task. While

this supervised procedure results in good accuracy, it comes at the
cost of high training timecomplexity dueto ablowup in thenumber

of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-

stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-

tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in

predictiveaccuracy [25, 27].
However, current techniques fail to satisfactorily defineand opti-

mizeareasonable objectiverequired for scalableunsupervised fea-
ture learning in networks. Classic approaches based on linear and

non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-

sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world

networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networksprovidean alternativeapproach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns

unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in

other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,

42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to thesamecommunity exhibit homophily, while thehub nodes

u and s6 in the two communities are structurally equivalent. Real-

http://snap.stanford.edu/proj/embeddings-www/

𝑁𝐵𝐹𝑆 𝑢 = { 𝑠1, 𝑠2, 𝑠3}

𝑁𝐷𝐹𝑆 𝑢 = { 𝑠4, 𝑠5, 𝑠6}

Local microscopic view

Global macroscopic view



Application: Health Records

https://www.nature.com/articles/s41598-021-85255-w.pdf
https://arxiv.org/abs/1906.05017

node2vec
ME2vec

Leveraging graph-based hierarchical medical entity embedding for healthcare applications
Tong Wu et.al (2021) [Nature Scientific Reports | Advanced Analytics, IQVIA Inc]

patient – medical service graph
patient – doctor graph

1. Predict patient diagnostic [node classification]
2. Predict if patient need to see a doctor [link prediction]
3. Readmission prediction [node classification]

Prediction 
Tasks:

node2vec, ME2vec

patient, medical service,
doctor embedding

Logistic Regression



Application: PayPal’s Collusion Fraud Prevention 

https://www.slideshare.net/Hadoop_Summit/graph-representation-learning-to-prevent-payment-collusion-fraud
https://www.h2o.ai/content/dam/h2o/en/marketing/documents/2020/01/PayPal-Customer-Case-Study-rnd2-1.pdf



Thank You
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