IEEE WCCI 2024

Simultaneously Detecting Node-Level and Edge-Level Anomalies on Heterogeneous Attributed Graphs

Rizal Fathony* Grab, Indonesia

Jenn Ng Grab, Singapore Jia Chen Grab, Singapore

*Presenter

Introduction

Motivations of our study

What is Anomaly Detection?

➜ **Anomaly Detection**

is the process of identifying unexpected observations in datasets, which deviate significantly from the majority of the data. $\|\cdot\|$

Why Anomaly Detection is Important?

Anomalous behaviors **Serious implications**

Financial Institutions

- Anomalous Transactions \rightarrow
- Stolen Credit Cards
- Money Laundering

Computer Networks

Anomalous Traffic \rightarrow

- Security Breach
- Network Intrusions

E-Commerce

Anomalous Purchase →

- Fraudulent Transactions
- Fake Reviews

Why **Unsupervised** Anomaly Detection?

Anomaly Detection (AD)

Usually done without label supervision (unsupervised learning)

- Anomaly events are rare.
- Labeling is sometimes expensive (domain expert are needed).

Adversarial Fraudsters

- Fraudsters are incentivized to adversarially innovate their methods of conducting fraud.
- Supervised learning model that rely on historical labels unable to detect new types of fraud.

Why Heterogeneous Graphs?

Heterogeneous Graphs

Main abstraction for modeling complex interactions among multiple groups.

Real-world, industrial level, interaction data: **complex and involve multiple entity types**

Node Type 1 Node Type 2 Node Type 3 Node Type 4 Edge Type 1 Edge Type 2 Edge Type 3 Edge Type 4

Edge Type 5

- etc…

Social Media

Node Type:

- User - Page
- Group - Post

Edge Type:

- Like - Comment
- Share
- Friendship

Why Node and Edge Attributes?

Real World Heterogeneous Graphs:

➜ **Rich of information**

in both the entity (**node**) and the interaction (**edge**)

➜ **Example:**

e-commerce graph

customer node:

- costumer profile
- historical preference, etc.

product node:

- product description
- product category, etc.

seller node:

- seller profile
- seller location
- previous customers stats, etc.

customer-buy-product:

- price paid
- payment method
- rating, review, etc.

customer-buyfrom-seller:

- how many products
- average prices, etc.

customer-use-creditcard:

- average transaction amounts
- transaction frequency, etc.

Why Node-Level and Edge-Level Anomaly Detection?

Node-Level Anomaly **Edge-Level Anomaly**

Node-level anomaly suggests abnormal behavior from a specific entity.

➜ **Example:** *e-commerce graph*

A customer might start exhibiting unexpected activity that could indicate fraudulent behavior.

Edge-level anomaly indicates unusual interactions or relationships.

➜ **Example:** *e-commerce graph*

The frequency of interactions between a customer and a seller might change unexpectedly, suggesting **collaborative** fraudulent patterns, such as collusion.

Anomaly Detection on Heterogeneous Graphs

High-performing anomaly detection system

- \rightarrow All rich information (node and edge attributes) in the graph need to be considered by the model
- \rightarrow The model need to be capable to detect **entity** (node-level) anomaly, and **interaction** (edge-level) anomaly

➜ **Our work!**

Heterogeneous Attributed Graph

Related Works

Unsupervised Anomaly Detection using Graph Neural Networks (GNN)

Anomaly Detection using Graph Neural Networks (GNN)

GNN models for unsupervised anomaly detection on attributed graphs

→ Motivated by the success of GNN architectures for supervised and semi-supervised learning

Our Approach

Our GNN architecture

Architecture Overview

HeagNet

Heterogeneous Node-and-**E**dge-**A**ttributed **G**raph Neural **Net**works

Feature Decoder Encoder H 2 4 anaa
Maaa <u>Film a</u> HHH 12 Z Z **Convolution** mm Convolution Convolution 11111 2021
2022 1952
2000 19 8 8 8
19 8 8 8
19 8 8 8 n n H H nas
He HI
Hi الماران an a \blacksquare m and **TIP** a di Ba $\overline{\hat{x}^e}$ h^e $\overline{\mathbf{h}^e}$ \mathbf{G} $\qquad \qquad \mathbf{h}^{\nu}$ $\qquad \mathbf{h}$ \mathbf{G} $\qquad \qquad \mathbf{h}^v$ $\qquad \mathbf{h}$ $\hat{\mathbf{x}}^v$ $G \hspace{1.6cm} Z$ G $\hat{\mathbf{x}}^v$ $\hat{\mathbf{x}}$ G Loss Function Convolution 0 п ----

-----MLP WLP **MLP WLP** MLP **MLP** <u>HELL</u> nn an
Shar HH : ΞΞ <u> Tarihi</u> \Box **Tale** П Sigmoid <u>ssaas</u> -----

-----MLP WLP \div 2001
 \div 2001 <u>se ee</u> 8555 | **MLP ONLP | BR The Common** H MLP WLP MLP 82 S.A
82 S.A a da ba n di n di T an an an $\Pr\left(e_{i,j}^{(r)} \in \mathcal{E}\right)$ **G** x^{ν} x^e \mathbf{x}^{ν} $\text{MLP}_{t_1}^{(r)}(\mathbf{z}_i) \cdot \text{MLP}_{t_2}^{(r)}(\mathbf{z}_j)$ **Structure Decoder** Input Graph

An autoencoderlike model

HeagNet with 4 layers

Encoder – Graph Convolution

HeagNet

Heterogeneous Node-and-**E**dge-**A**ttributed **G**raph Neural **Net**works

Message Passing Flow:

Encoder – Latent Representation

HeagNet

Heterogeneous Node-and-**E**dge-**A**ttributed **G**raph Neural **Net**works

Encoder

Feature Decoder

HeagNet

Heterogeneous Node-and-**E**dge-**A**ttributed **G**raph Neural **Net**works

Input Graph

 G X^{ν} x

 \mathbf{x}^e

Feature Decoder

Structure Decoder

HeagNet

Heterogeneous Node-and-**E**dge-**A**ttributed **G**raph Neural **Net**works

Loss Function

Our optimization objective:

➜ **Reconstruction Loss**

- **-** feature reconstruction error (MSE) of the feature decoder
- **-** edge prediction error (BCE) of the structure decoder

Feature Decoder

Anomaly Score Construction

Reconstruction-based anomaly score

Normal behaviors : common → can be easily reconstructed Anomalous behaviors : rare ➜cannot be reconstructed easily

Edge-Level Anomaly Score

edge reconstruction error

Node-Level Anomaly Score node features reconstruction error + aggregate over edge scores in all edge types

Aggregate operator: **max** or **mean**

Experiments

Model evaluation

Datasets

Telecom

relationship of users & behaviors in a telecommunication network node types: user, package, app, cell

Reddit

user interactions on the Reddit forum

node types: different groups of users and subreddits

Brightkite | Gowalla

user interactions on location-based social networks

node types: different groups of users and clusters of geohash locations

Datasets with various characteristics

Regular size datasets

Large size dataset

Anomaly ratio: 0.2% - 4.7%

Injection: - topological structure anomaly - attributes anomaly

Baselines & Evaluation Metric

BASELINES

Homogeneous GNN Models **DOMINANT** (Ding et.al; 2019)

AnomalyDAE (Fan, et.al; 2020)

CONAD (Xu et.al; 2022)

Convert heterogeneous graphs into homogeneous graph Edge anomaly score = average of the connected node scores

Features Only **Isolation Forest** (Liu et.al; 2008)

Classical, non graph model One model for each node type and each edge type

Heterogeneous GNN Model **AHEAD** (Yang et.al; 2022) *node-level only anomaly detection on heterogeneous graph* An HGT-based model. It does not accept edge features Edge anomaly score = average of the connected node scores

EVALUATION METRIC

Area under the Precision Recall Curve (AUC-PR)

Suitable for a very imbalance dataset like in the anomaly detection task.

Overall Results

AUC-PR for node and edge anomaly detections

Edge-Level Anomaly: HeagNet significantly outperforms the baselines, often by a considerably large margin.

Node-Level Anomaly: HeagNet also maintain a relatively significant lead over all baselines.

HeagNet is the only model capable to utilize node and edge features and natively perform node-level and edge level detection

Large Size Datasets: HeagNets are **scalable** to the datasets, whereas most of the GNN baselines are not.

Overall Results

AUC-PR for node and edge anomaly detections

Edge-Level Anomaly: HeagNet significantly outperforms the baselines, often by a considerably large margin.

Node-Level Anomaly: HeagNet also maintain a relatively significant lead over all baselines.

HeagNet is the only model capable to utilize node and edge features and natively perform node-level and edge-level detection

Large Size Datasets: HeagNets are **scalable** to the datasets, whereas most of the GNN baselines are not.

Attention mechanism in HeagNet: HeagNet-C perform better than HeagNet-A, indicating that attention mechanism does not contribute much to the model performance.

Precision-Recall Curve

Precision Recall Trade-off at any given point in PR Curve

at almost all thresholding points **HeagNet-C** outperforms all the baselines, sometimes by a **significant** margin.

Conclusions

Conclusions and Remarks

Heterogeneous Graphs **All available information need to be considered** to build a high-performing anomaly detection model

Our proposed model **HeagNet is effective in detecting** both node-level and edge-level anomalies on heterogeneous graphs

Open-Source Implementation

<https://github.com/grab/HeagNet/>

G PyTorch

Thank You

