IEEE WCCI 2024

Simultaneously Detecting Node-Level and Edge-Level Anomalies on Heterogeneous Attributed Graphs

Rizal Fathony* Grab, Indonesia Jenn Ng Grab, Singapore Jia Chen Grab, Singapore

*Presenter

Introduction

Motivations of our study

2

What is Anomaly Detection?

→ Anomaly Detection

is the process of identifying unexpected observations in datasets, which deviate significantly from the majority of the data.

Why Anomaly Detection is Important?

Anomalous behaviors Serious implications

Financial Institutions

- Anomalous Transactions \rightarrow
- Stolen Credit Cards
- Money Laundering

ှ Compu

Computer Networks

- Anomalous Traffic \rightarrow
- Security Breach
- Network Intrusions

E-Commerce

- Anomalous Purchase \rightarrow
- Fraudulent Transactions
- Fake Reviews

Why Unsupervised Anomaly Detection?

Anomaly Detection (AD)

Usually done without label supervision (unsupervised learning)

- Anomaly events are rare.
- Labeling is sometimes expensive (domain expert are needed).

Adversarial Fraudsters

- Fraudsters are incentivized to adversarially innovate their methods of conducting fraud.
- Supervised learning model that rely on historical labels unable to detect new types of fraud.

Why Heterogeneous Graphs?

Heterogeneous Graphs

Main abstraction for modeling complex interactions among multiple groups.

Real-world, industrial level, interaction data: <u>complex and involve multiple entity types</u>

Node Type 1
Node Type 2
Node Type 3
Node Type 4
Edge Type 1
Edge Type 2
Edge Type 3
Edge Type 4
Edge Type 5

Social Media

Node Type:

- User Page
- Group Post

Edge Type:

- Like - Comment
- ShareFriendship

Why Node and Edge Attributes?

Real World Heterogeneous Graphs:

→ Rich of information

in both the entity (**node**) and the interaction (**edge**)

→ Example:

e-commerce graph

customer node:

- costumer profile
- historical preference, etc.

product node:

- product description
- product category, etc.

seller node:

- seller profile
- seller location
- previous customers stats, etc.

customer-buy-product: - price paid

- payment method
- rating, review, etc.

customer-buyfrom-seller:

- how many products
- average prices, etc.

customer-use-creditcard:

- average transaction amounts
- transaction frequency, etc.

Why Node-Level and Edge-Level Anomaly Detection?

Node-Level Anomaly

Node-level anomaly suggests abnormal behavior from a specific entity.

→ Example: *e*-commerce graph

A customer might start exhibiting unexpected activity that could indicate fraudulent behavior.

Edge-Level Anomaly

Edge-level anomaly indicates unusual interactions or relationships.

→ Example: *e*-commerce graph

The frequency of interactions between a customer and a seller might change unexpectedly, suggesting **collaborative** fraudulent patterns, such as collusion.

Anomaly Detection on Heterogeneous Graphs

High-performing anomaly detection system

- → All rich information (node and edge attributes) in the graph need to be considered by the model
- → The model need to be capable to detect entity (node-level) anomaly, and interaction (edge-level) anomaly

→ Our work!

Related Works

Unsupervised Anomaly Detection using Graph Neural Networks (GNN)

Anomaly Detection using Graph Neural Networks (GNN)

GNN models for unsupervised anomaly detection on attributed graphs

→ Motivated by the success of GNN architectures for supervised and semi-supervised learning

Method	Accept Node Features	Accept Edge Features	Node-Level Anomaly Detection	Edge-Level Anomaly Detection	Support Homogeneous Graphs	Support Bipartite Graphs	Support Heterogeneous Graphs
Reconstruction-based Homogeneous GNN - DOMINANT [Ding, et.al; 2019] - AnomalyDAE [Fan et al., 2020] - GAD-NR [Roy et al., 2023], etc	Yes	No	Yes	No	Yes	No	No
Contrastive-based Homogeneous GNN - CoLA [Liu et al., 2021], - CONAD [Xu et al., 2022] - ANEMONE [Jin et al., 2021], etc	Yes	No	Yes	No	Yes	No	No
GraphBEAN [Fathony et al., 2023]	Yes	Yes	Yes	Yes	No	Yes	No
AHEAD [Yang et al., 2022]	Yes	No	Yes	No	Yes	Yes	Yes
Our Method	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Our Approach

Our GNN architecture

Architecture Overview

HeagNet

<u>Heterogeneous Node-and-Edge-Attributed</u> Graph Neural <u>Net</u>works

An autoencoderlike model

Encoder – Graph Convolution

HeagNet

<u>Heterogeneous Node-and-Edge-A</u>ttributed <u>G</u>raph Neural <u>Net</u>works

Encoder

Message Passing Flow:

Encoder – Latent Representation

HeagNet

<u>Heterogeneous Node-and-Edge-A</u>ttributed <u>G</u>raph Neural <u>Net</u>works

15

Encoder

Feature Decoder

HeagNet

<u>H</u>eterogeneous Node-and-<u>E</u>dge-<u>A</u>ttributed <u>G</u>raph Neural <u>Net</u>works

∀ node types

 \forall edge types

Input Graph

G

x^e

 $\mathbf{x}^{\boldsymbol{v}}$

Feature Decoder

Structure Decoder

HeagNet

<u>Heterogeneous Node-and-Edge-Attributed</u> Graph Neural <u>Net</u>works

Loss Function

Our optimization objective:

→ Reconstruction Loss

- feature reconstruction error (MSE) of the feature decoder
- edge prediction error (BCE) of the structure decoder

Feature Decoder

Anomaly Score Construction

Reconstruction-based anomaly score

Normal behaviors : Anomalous behaviors :

common rare

can be easily reconstructed \rightarrow cannot be reconstructed easily \rightarrow

Aggregate operator: max or mean

in all edge types

Experiments

Model evaluation

Datasets

Telecom

relationship of users & behaviors in a telecommunication network node types: user, package, app, cell

Reddit

user interactions on the Reddit forum

node types: different groups of users and subreddits

Brightkite | Gowalla

user interactions on location-based social networks

node types: different groups of users and clusters of geohash locations

Datasets with various characteristics

Regular size datasets

Large size dataset

Anomaly ratio: 0.2% - 4.7%

Injection: - topological structure anomaly - attributes anomaly

Dataset	#(node, edge) type	#node	#edge	avg deg.	avg (node, edge) dim.	node +ratio	edge +ratio
Telecom-Small	(4, 3)	80,380	890,000	11.1	(370, 50)	0.012	0.005
Reddit	(4, 4)	64,180	76,193	1.2	(384, 384)	0.010	0.011
Brightkite	(5, 4)	125,467	608,466	4.8	(10, 8)	0.026	0.047
Gowalla	(5, 4)	282,812	2,092,019	7.4	(10, 8)	0.018	0.012
Telecom-Large	(4, 3)	170,380	8,900,000	52.2	(370, 50)	0.017	0.002

TABLE I: Dataset properties.

Baselines & Evaluation Metric

BASELINES

Homogeneous GNN Models **DOMINANT** (Ding et.al; 2019)

AnomalyDAE (Fan, et.al; 2020)

CONAD (Xu et.al; 2022)

Convert heterogeneous graphs into homogeneous graph Edge anomaly score = average of the connected node scores

Features Only Isolation Forest (Liu et.al; 2008)

Classical, non graph model One model for each node type and each edge type

Heterogeneous GNN Model AHEAD (Yang et.al; 2022)

node-level only anomaly detection on heterogeneous graph

An HGT-based model. It does not accept edge features Edge anomaly score = average of the connected node scores

EVALUATION METRIC

Area under the Precision Recall Curve (AUC-PR)

Suitable for a very imbalance dataset like in the anomaly detection task.

22

Overall Results

AUC-PR for node and edge anomaly detections

Edge-Level Anomaly: HeagNet significantly outperforms the baselines, often by a considerably large margin.

Node-Level Anomaly: HeagNet also maintain a relatively significant lead over all baselines.

HeagNet is the only model capable to utilize node and edge features and natively perform node-level and edge level detection Large Size Datasets: HeagNets are scalable to the datasets, whereas most of the GNN baselines are not.

Model	IsoF	orest	DOMI	NANT	Anoma	lyDAE	CON	NAD	AHE	EAD	Heagl	Net-C	HeagN	Net-A
Dataset	Node	Edge	Node	Edge	Node	Edge	Node	Edge	Node	Edge	Node	Edge	Node	Edge
Telecom- Small	0.924 (0.06)	0.556 (0.04)	0.428 (0.05)	0.196 (0.06)	0.132 (0.04)	0.036 (0.04)	0.427 (0.05)	0.196 (0.06)	0.942 (0.05)	0.597 (0.06)	0.970 (0.02)	0.715 (0.07)	$\frac{0.965}{(0.04)}$	<u>0.711</u> (0.07)
Reddit	0.955 (0.05)	0.770 (0.17)	0.644 (0.15)	0.705 (0.08)	0.533 (0.10)	0.567 (0.07)	0.644 (0.15)	0.705 (0.08)	0.949 (0.05)	0.545 (0.09)	0.968 (0.03)	0.788 (0.17)	$\frac{0.963}{(0.02)}$	0.791 (0.15)
Brightkite	0.893 (0.07)	0.547 (0.15)	0.731 (0.12)	$\frac{0.569}{(0.05)}$	0.185 (0.04)	0.235 (0.09)	0.719 (0.12)	0.568 (0.05)	0.616 (0.11)	0.202 (0.09)	0.928 (0.05)	0.590 (0.12)	$\frac{0.907}{(0.05)}$	0.534 (0.10)
Gowalla	0.845 (0.05)	0.246 (0.06)	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	0.952 (0.03)	0.445 (0.09)	$\frac{0.930}{(0.03)}$	$\frac{0.310}{(0.07)}$
Telecom- Large	0.945 (0.07)	0.493 (0.10)	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	0.964 (0.05)	0.642 (0.11)	<u>0.961</u> (0.05)	<u>0.616</u> (0.10)

TABLE II: The mean (and stdev.) of the Average-AUCPR metrics over multiple experiment runs in each dataset.

23

Overall Results

AUC-PR for node and edge anomaly detections

Edge-Level Anomaly: HeagNet significantly outperforms the baselines, often by a considerably large margin.

Node-Level Anomaly: HeagNet also maintain a relatively significant lead over all baselines.

HeagNet is the only model capable to utilize node and edge features and natively perform node-level and edge-level detection

Large Size Datasets: HeagNets are scalable to the datasets, whereas most of the GNN baselines are not.

Attention mechanism in HeagNet: HeagNet-C perform better than HeagNet-A, indicating that attention mechanism does not contribute much to the model performance.

TABLE II: The mean ((and stdev.) of the	Average-AUCPR	metrics over multiple	experiment runs in each dataset.
		\mathcal{U}	1	1

Model	IsoF	IsoForest DOMINANT		AnomalyDAE		CON	CONAD		AHEAD		HeagNet-C		Net-A	
Dataset	Node	Edge	Node	Edge	Node	Edge	Node	Edge	Node	Edge	Node	Edge	Node	Edge
Telecom- Small	0.924 (0.06)	0.556 (0.04)	0.428 (0.05)	0.196 (0.06)	0.132 (0.04)	0.036 (0.04)	0.427 (0.05)	0.196 (0.06)	0.942 (0.05)	0.597 (0.06)	0.970 (0.02)	0.715 (0.07)	<u>0.965</u> (0.04)	$\frac{0.711}{(0.07)}$
Reddit	0.955 (0.05)	0.770 (0.17)	0.644 (0.15)	0.705 (0.08)	0.533 (0.10)	0.567 (0.07)	0.644 (0.15)	0.705 (0.08)	0.949 (0.05)	0.545 (0.09)	0.968 (0.03)	<u>0.788</u> (0.17)	<u>0.963</u> (0.02)	0.791 (0.15)
Brightkite	0.893 (0.07)	0.547 (0.15)	0.731 (0.12)	$\frac{0.569}{(0.05)}$	0.185 (0.04)	0.235 (0.09)	0.719 (0.12)	0.568 (0.05)	0.616 (0.11)	0.202 (0.09)	0.928 (0.05)	0.590 (0.12)	$\frac{0.907}{(0.05)}$	0.534 (0.10)
Gowalla	0.845 (0.05)	0.246 (0.06)	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	0.952 (0.03)	0.445 (0.09)	$\frac{0.930}{(0.03)}$	$\frac{0.310}{(0.07)}$
Telecom- Large	0.945 (0.07)	0.493 (0.10)	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	0.964 (0.05)	0.642 (0.11)	<u>0.961</u> (0.05)	<u>0.616</u> (0.10)

Precision-Recall Curve

Precision Recall Trade-off at any given point in PR Curve

at almost all thresholding points HeagNet-C outperforms all the baselines, sometimes by a significant margin.

Conclusions

Conclusions and Remarks

Heterogeneous Graphs **All available information need to be considered** to build a high-performing anomaly detection model

Our proposed model HeagNet is effective in detecting both node-level and edge-level anomalies on heterogeneous graphs

Open-Source Implementation

<u> https://github.com/grab/HeagNet/</u>

O PyTorch

Thank You

