IJCNN 2023

Interaction-Focused Anomaly Detection on Bipartite Node-and-Edge-Attributed Graphs

Rizal Fathony* Grab, Indonesia Jenn Ng Grab, Singapore Jia Chen Grab, Singapore

*Presenter

Introduction

Motivations of our study

2

What is Anomaly Detection?

→ Anomaly Detection

is the process of identifying unexpected observations in datasets, which deviate significantly from the majority of the data.

Why Anomaly Detection is Important?

Anomalous behaviors Serious implications

Financial Institutions

- Anomalous Transactions \rightarrow
- Stolen Credit Cards
- Money Laundering

Computer Networks

Anomalous Traffic →

- Security Breach
- Network Intrusions

E-Commerce

- Anomalous Purchase \rightarrow
- Fraudulent Transactions
- Fake Reviews

Why Unsupervised Anomaly Detection?

Anomaly Detection (AD)

Usually done without label supervision (unsupervised learning)

- Anomaly events are rare.
- Labeling is sometimes expensive (domain expert are needed).

Adversarial Fraudsters

- Fraudsters are incentivized to adversarially innovate their methods of conducting fraud.
- Supervised learning model that rely on historical labels unable to detect new types of fraud.

Why (Bipartite) Graphs?

Bipartite Graphs

Main abstraction for modeling interactions between two groups.

Often referred as: user-interaction-item graphs

E-commerce

consumer-purchase-product graph

Movie Streaming Platform user-review-movie graph

Network Monitoring

ip_address-request-server graph

Why Node-and-Edge Attributed Graphs?

Real World Bipartite Graphs

→ Rich of information

in both the entity (**node**) and the interaction (**edge**)

→ Example:

consumer–purchase–product graph

consumer node:

- consumer profile
- historical preference, etc.

product node:

- product description
- product category, etc.

purchase interaction:

- price paid
- payment method
- rating, review, etc.

Anomaly Detection on Bipartite Node-and-Edge-Attributed Graphs

High-performing anomaly detection system

- → All rich information in the graph need to be considered by the model
- → Capable to detect entity (node-level) anomaly, and interaction (edge-level) anomaly

→ Our work!

Related Works

Unsupervised Anomaly Detection using Graph Neural Networks (GNN)

Anomaly Detection using Graph Neural Networks (GNN)

GNN models for unsupervised anomaly detection on attributed graphs

→ Motivated by the success of GNN architectures for supervised and semi-supervised learning

1) DOMINANT (Ding, et.al; 2019):

- One of the first GNN anomaly model
- Autoencoder-like architecture

2) AnomalyDAE (Fan, et.al; 2020):

- Extend the architecture with two decoders: Structure Decoder and Attribute Decoder

3) Other models:

AdOne (Bandyopadhya, et.al; 2020) CONAD (Xu, et.al; 2022) etc...

Anomaly Detection using Graph Neural Networks (GNN)

GNN models for unsupervised anomaly detection on attributed graphs

Motivated by the success of GNN architectures for supervised and semi-supervised learning

Shortcomings of the previous works:

- Can only handle homogeneous graphs
 No clear guide on extending it to bipartite graphs
 - Only handle node-attributed graphs
- 2) A nomaly DA Cannot incorporate edge attributes
 - Only detect node-level anomaly No edge-level anomaly detection
- Scalability issues
 Cannot handle large-sized graphs

Our Approach

Our GNN architecture

GraphBEAN

<u>B</u>ipartite Node-and-<u>E</u>dge-<u>A</u>ttributed <u>N</u>etworks

An autoencoderlike model

GraphBEAN

<u>B</u>ipartite Node-and-<u>E</u>dge-<u>A</u>ttributed <u>N</u>etworks

An autoencoderlike model

Input Graph

GraphBEAN

<u>B</u>ipartite Node-and-<u>E</u>dge-<u>A</u>ttributed <u>N</u>etworks

An autoencoderlike model

Loss Function

Our optimization objective:

→ Reconstruction Loss

- feature reconstruction error (MSE) of the feature decoder
- edge prediction error (BCE) of the structure decoder

FEATURE DECODER

Ħ

Anomaly Score Construction

Reconstruction-based anomaly score

Normal behaviors :commonAnomalous behaviors :rare

can be easily reconstructed
 cannot be reconstructed easily

Edge-Level Anomaly Score

edge reconstruction error

Node-Level Anomaly Score node features reconstruction error

+ aggregate over edge scores

Aggregate operator: max or mean

Experiments

Model evaluation

Datasets

Wikipedia contributor-edit-wikipage graph

Reddit *user–post–subreddit* graph

Amazon | Finefoods category Amazon | Movies category consumer-review-product graph Datasets with various characteristics

Regular size datasets

Large size dataset

Anomaly ratio (edge): 0.2% - 3.7%

Injection: - topological structure anomaly - attributes anomaly

DATASET PROPERTIES

Dataset	$ $ #node \mathcal{U}	#node \mathcal{V}	#edge	$ \mathcal{U} $ deg.	${\cal V}$ deg.	$ $ #ft. ${\cal U}$	#ft. \mathcal{V}	#ft. \mathcal{E}	+ratio \mathcal{U}	+ratio \mathcal{V}	+ratio \mathcal{E}
FINEFOODS-SMALL	9,705	4,879	18,523	1.9	3.8	11	11	384	0.013	0.026	0.037
MOVIES-SMALL	9,622	6,366	28,147	2.9	4.4	11	11	384	0.013	0.019	0.020
WIKIPEDIA	8,227	1,000	18,257	2.2	18.3	174	174	345	0.023	0.071	0.025
Reddit	10,000	984	78,516	7.9	79.8	174	174	345	0.038	0.102	0.012
FINEFOODS-LARGE	256,059	74,258	560,804	2.2	7.6	11	11	384	0.004	0.014	0.013
MOVIES-LARGE	889,176	253,059	7,834,236	8.8	31.0	11	11	384	0.001	0.005	0.002

Baselines & Evaluation Metric

BASELINES

Graph Structure Only **FRAUDAR** (Hooi et.al; 2016) *dense block anomaly detection on bipartite graphs* Non-attributed graphs

Features Only Isolation Forest (Liu et.al; 2008)

Classical, non graph model

GNN Models
DOMINANT (Ding et.al; 2019)
AnomalyDAE (Fan, et.al; 2020)
AdOne (Bandyopadhya, et.al; 2020)
CONAD (Xu et.al; 2022)
Convert bipartite graphs into homogeneous graph

Edge anomaly score = average of the connected node scores

EVALUATION METRIC

Area under the Precision Recall Curve (AUC-PR)

Suitable for a very imbalance dataset like in the anomaly detection task.

Overall Results

AUC-PR for node and edge anomaly detections

Edge-Level Anomaly: GraphBEAN significantly outperforms all models, often by a large margin

Node-Level Anomaly: GraphBEAN also **outperforms** the baselines, often by a considerably large margin

Large Size Datasets: GraphBEAN are scalable to the datasets, whereas most of the GNN baselines are not

Table 2. Results for large size datasets

 \mathcal{E}

0.001

0.722

0.779

Dataset	Dataset FINEFOODS-SMALL		MOVIES-SMALL			WIKIPEDIA			REDDIT			Dataset	FINEFOODS-LA		LARGE	RGE MOVIES-LARGE			
Model	U	\mathcal{V}	E	U	\mathcal{V}	E	U	\mathcal{V}	ε	U	\mathcal{V}	E	Model	U	\mathcal{V}	E	\mathcal{U}	\mathcal{V}	
FRAUDAR	0.256 (0.07)	0.392 (0.07)	0.279 (0.13)	0.229 (0.12)	0.188 (0.11)	0.260 (0.16)	0.102 (0.03)	0.085 (0.09)	0.043 (0.04)	0.059 (0.02)	0.101 (0.01)	0.011 (0.007)	FRAUDAR	0.093 (0.02)	0.195 (0.03)	0.077 (0.02)	0.004	0.007	(
IsoForest	0.090 (0.02)	0.166 (0.04)	0.794 (0.12)	0.127 (0.05)	0.181 (0.08)	0.827 (0.10)	0.226 (0.06)	0.499 (0.12)	0.278 (0.10)	0.361 (0.08)	0.608 (0.07)	0.172 (0.039)	IsoForest	0.023 (0.00)	0.098 (0.02)	0.805 (0.05)	0.008	0.025	(
DOMINANT	0.735 (0.10)	0.721 (0.10)	0.686 (0.12)	0.631 (0.09)	0.708 (0.08)	0.389 (0.16)	0.164 (0.03)	0.179 (0.04)	0.049 (0.02)	0.121 (0.02)	0.186 (0.01)	0.016 (0.003)	GraphBEAN	0.701 (0.07)	0.813 (0.05)	0.875 (0.03)	0.413	0.547	(
AnomalyDAE	0.770 (0.09)	0.773 (0.09)	0.683 (0.12)	0.679 (0.12)	0.753 (0.10)	0.556 (0.10)	0.174 (0.03)	0.193 (0.04)	0.051 (0.02)	0.128 (0.02)	0.192 (0.02)	0.015 (0.003)							
CONAD	0.740 (0.10)	0.721 (0.10)	0.691 (0.12)	0.684 (0.09)	0.695 (0.08)	0.564 (0.09)	0.165 (0.03)	0.182 (0.04)	0.052 (0.05)	0.116 (0.02)	0.180 (0.18)	0.016 (0.003)							
AdOne	0.239 (0.05)	0.162 (0.03)	0.048 (0.01)	0.164 (0.03)	0.129 (0.03)	0.021 (0.01)	0.205 (0.04)	0.128 (0.03)	0.025 (0.01)	0.138 (0.02)	0.133 (0.01)	0.008 (0.001)							
GraphBEAN (ours)	0.855 (0.08)	0.875 (0.07)	0.876 (0.09)	0.911 (0.04)	0.911 (0.04)	0.888 (0.08)	0.441 (0.09)	0.571 (0.03)	0.415 (0.11)	0.427 (0.06)	0.631 (0.04)	0.296 (0.038)							

Table 1. Results (average and std. dev) for standard size datasets

Precision-Recall Curve

Precision Recall Trade-off

at any given point in PR Curve

at almost all thresholding points **GraphBEAN** outperforms all the baselines, sometimes by a **significant** margin.

23

Conclusions

Conclusions and Remarks

Conclusions

Interaction Graphs All available information is required to build a high-performing anomaly detection model

Our proposed model GraphBEAN is effective in detecting entity level and interaction level anomaly on bipartite interaction graphs

Open-Source Implementation

https://github.com/grab/GraphBEAN/

O PyTorch

🚳 PyG

25

Thank You

