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Successful applications across different areas
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Search engine E-commerce Computer Vision Speech Recognition Text Analysis
Despite of the success stories

A missing piece 
in the current learning algorithms



Machine Learning Pipeline

Prepare
data

Choose an 
evaluation 

metric

Choose a 
model

Train the 
model

Evaluate the 
performance

Formulate a
problem



Evaluation Metric

Example: Digit Recognition Evaluation Metric:

Performance Metric: Accuracy

Accuracy = 
# correct prediction

# sample

Loss Metric: Zero-One Loss

Zero-One Loss = 
# incorrect prediction

# sample

Most widely used metric!



Accuracy metric is not always perfect 

Example: Movie Rating Prediction Evaluation Metric:

Accuracy metric:
does not consider distances

Loss Metric: Absolute Loss

AbsoluteLoss = 
1

𝑛
σ𝑖 | ො𝑦𝑖 − 𝑦𝑖|

ො𝑦𝑖 : predicted label

𝑦𝑖 : true label

Predicted vs Actual Label:

Distance Loss



Accuracy metric is not always desirable

Example: Disease Prediction
(imbalance dataset)

98% of the samples: healthy (negative samples)

2% of the samples: have disease (positive samples)

Predict all samples as negative:
Accuracy metric: 98%

Confusion Matrix

Precision = 
# true positive

# predicted positive
Recall = 

# true positive
# actual positive

Specificity = 
# true negative

# actual negative
Sensitivity = 

# true positive
# actual positive

F1-score = 
2 ∙ precision ∙ recall

precision + recall

Fβ-score = 
(1 + β2) ∙ precision ∙ recall
(β2 ∙ precision )+ recall



External data is needed

Example: Stock market prediction Example: Electricity demand prediction

Prediction tasks:
Predict the electricity demands on a certain time

Evaluation metric:
The cost of electricity generation 
given the prediction

Prediction tasks:
Predict the stock prices

Evaluation metric:
Revenue when making investments 
based on the prediction
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Goal vs Training Model Mismatch (1)

Choose an 
evaluation 

metric

Choose a 
model

Train the 
model

Example: Disease prediction

Goal: optimize 
specificity & sensitivity

Most of ML models:
- No support for specificity & sensitivity metric
- Optimize the cross-entropy objective

(a proxy for accuracy metric)

vs



Goal vs Training Model Mismatch (2)

Choose an 
evaluation 

metric

Choose a 
model

Train the 
model

Example: Electricity demand prediction

Goal: minimize the cost of 
electricity production

Most of the existing models:
- optimize cross-entropy (discrete models)
- optimize mean squared error (continuous models)

vs



Goal vs Training Model Mismatch (3)

Machine Learning Tasks Evaluation Metrics Common Training Objectives

Medical/health areas Specificity & sensitivity Cross entropy

Text classification Precision, Recall, F1-score Cross entropy

Classification with imbalance data F1-score, AUC, MCC Cross entropy

Rating prediction Absolute loss, Kappa score Cross entropy, MSE

Electricity prediction Electricity production cost Cross entropy, MSE

Stock market prediction Revenue MSE

Discrepancy:
Evaluation metrics vs training objective

Inferior performance results
(Cortes & Mohri, 2004; Eban et.al, 2016)



Real World Consequence

Discrepancy:
Evaluation metrics vs
training objective

Inferior performance 
results

Machine Learning Tasks Results Real world consequence

Disease prediction Suboptimal prediction 
performance

Inaccurate disease test

Online advertising prediction Misplaced ads Revenue Lost

Electricity prediction Over-production Increasing production cost

Stock market prediction Suboptimal prediction Revenue Lost

Real world 
consequence



Research Overview

Bringing
Evaluation metric + training model

in harmony

Choose an 
evaluation metric

Choose a 
model

Train the 
model

Goal-Oriented Learning
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Current Approaches
Approach for designing learning algorithms



Data

Data
Distribution
𝑃(𝒙, 𝑦)

𝒙1 𝑦1

𝒙2 𝑦2

𝒙𝑛 𝑦𝑛

…

Training

Supervised Learning | Binary Classification

𝒙𝑛+1 ො𝑦𝑛+1

Testing

𝒙𝑛+2

…

Evaluation Metric:
metric( ො𝑦, 𝑦)

ො𝑦𝑛+2

accuracy ෝ𝒚, 𝒚 =
1

𝑛
෍

𝑖
𝐼 ො𝑦𝑖 = 𝑦𝑖

Performance Metric: Accuracy

zero-one-loss ෝ𝒚, 𝒚 =
1

𝑛
σ𝑖 𝐼( ො𝑦𝑖 ≠ 𝑦𝑖)

Loss Metric: Zero-One Loss

Empirical 
Training Data
෨𝑃(𝒙,𝑦)

PredictionLabelSample

Correct prediction

Incorrect prediction

Evaluation Metric:



Standard Approach for Learning Algorithms

Empirical Risk Minimization (ERM) [Vapnik, 1992]

• Assumes a family of parametric hypothesis function 𝑓 (e.g. linear discriminator)

• Finds the hypothesis 𝑓∗ that minimize the empirical risk:

Intractable optimization!

Since the zero-one loss (accuracy) is: discrete & non-continuous
(Steinwart and Christmann, 2008)

Empirical Training Data
Prediction True label

Loss metric: e.g. zero-one loss metric Empirical loss



Example: Binary classification with accuracy metric

Surrogate Losses
ERM: prescribes the use of convex surrogate loss 
to avoid intractability

Support Vector Machine (SVM) Logistic Regression (LR)

Original loss metric: discrete

Convex surrogate loss Convex surrogate loss

Probabilistic prediction



More Complex Evaluation Metrics
ERM: Extend the binary surrogate losses to the settings.

Binary classification | accuracy

SVM & Logistic Regression:

Perform well in practice

Multiclass classification | accuracy

Statistical consistency

Multiclass SVMs: many formulations.
Each formulation lacks one or more:

Lacks statistical consistency

Do not perform well in practice

SVM: Dual sparsity 
(solution depends on few samples)

(Tewari & Bartlett, 2006; Liu 2007; Dogan et.al. 2016)

More complex evaluation metrics

Logistic Regression-based model: None

No model for complex metrics

SVM-based model: SVM-perf (Joachims, 2005)

Lacks statistical consistency

Does not provide easy tool to extend the 
method to custom metrics

Works on many complex metrics

Most of other models:

Hard to extend to custom metrics



Neural Networks Learning
Currently the popular machine learning model.

Binary & multiclass classification

Objective: Cross entropy objective

=

More complex evaluation metrics

Most of ‘classical’ models:

Not applicable to NN learning

NN-targeted models: 
(Eban et.al, 2016; Song et.al, 2016; Sanyal, et.al, 2018)

Only support few metrics

No support for custom metrics

Use the ‘classical’ surrogate losses as the last layer (objective).

Logistic regression (log-loss surrogate)

Practitioners’ perspective

Aim to optimize an evaluation metric 
tailored specifically for their problem.
(e.g. specificity, sensitivity, F-beta score)

No learning models can optimize their 
specific evaluation metrics.

Choose the standard cross entropy 
instead

Mismatch between
Goal vs Training Model



A New Learning 
Framework
A different approach on designing learning algorithms



A Different Approach in Learning Algorithm Design

Optimize Original 
Evaluation Metric

Discrete, Intractable

Empirical Risk Minimization 
with Convex Surrogate Loss

Convex, Tractable

Approximate the metric

Exact training data

Adversarial Prediction
(Fathony et.al, ‘18; Asif et.al ‘16)

Convex, Tractable

Exact evaluation metric

Approximate training data

More complex metric →
Harder to construct good surrogate losses

No need to independently construct 
surrogate loss for every metric

Empirical Risk Minimization

Adversarial Prediction



Empirical Risk MinimizationApproximate the loss metricOriginal Loss Metric
Discrete, Intractable with convex surrogates

Adversarial Prediction (Fathony et.al, 2018; Asif et.al, 2016)

Empirical data (𝑥, 𝑦)

Convex surrogate loss

Convex, Tractable

Empirical data (𝑥, 𝑦)

Original loss metric

Probabilistic 
predictor

Empirical data (𝑥, 𝑦)

Predictor

Probabilistic prediction

Predictor’s
Probability

Evaluate against an adversary
instead of empirical label

Adversary’s 
probability

Empirical sample (𝑥 only)

Predictor Adversary

Adversarial Prediction
Convex, Tractable

Predictor Adversary Original loss metric

Empirical 
data (𝑥, 𝑦)

Features Features

Adversary distribution’s 
statistics

Empirical statistics

Approximate the 
training data

Use original 
evaluation metric

Constraint the
adversary

Original loss metric

Original loss metric



Primal:

Adversarial Prediction: Dual Formulation

Dual:

Lagrange multiplier 
for the constraints

discrete 
loss metric

Convex w.r.t. 𝜃

Lagrange duality, minimax duality
Flip the optimization order

ERM: How to construct a surrogate loss
for a given evaluation metric?

Adversarial Prediction: 
How to solve the maximin problem above?

Empirical data

PredictorAdversary

Feature differences (from the constraint)



Designing Learning 
Algorithms
Adversarial prediction formulations for various 
machine learning tasks



Evaluation Metrics

Decomposable Metrics Non-Decomposable Metrics

Can be decomposed into sample-wise sum

Example: accuracy, ordinal, taxonomy-
based, classification with abstention 
metrics, and cost-sensitive metrics.

Cannot be decomposed into sample-wise sum

Binary and multiclass classification

Example: F1-score, GPR, informedness, 
MCC, Kappa score.

Binary and multiclass classification



Decomposable Metrics



Decomposable Metrics
(Fathony et.al, NeurIPS 2016 & 2017, CoRR 2018)

Decomposable metrics:

Simple loss metrics:  Analytical solution

Example: - Zero-one loss metric (accuracy performance) [NeurIPS 2016]
- Absolute & squared loss metric [NeurIPS 2017]
- Classification with abstention [CoRR 2018]

Technique: Analyze the Nash equilibrium solution of the zero-sum game.

Dual:

Loss metric for 
the whole training set

Sample-wise 
loss metric

Example for binary classification

Vector notations:



Decomposable Metrics | Complex Loss Metric
(Fathony et.al, CoRR 2018)

More complex losses: Reformulation as a Linear Program

Example: - Taxonomy-based loss metric
- Cost-sensitive loss metric

Technique: Reformulate as a linear program, and use standard LP solver 
size of the LP: 𝑘+1, where 𝑘 = # of class

Dual:

Decomposable metrics:

Loss metric for 
the whole training set

Sample-wise 
loss metric



Example: Multiclass Classification with Accuracy Metric
(Fathony et.al, NeurIPS 2016)

Dual Sparsity?
Perform well in

low dimensional feature?
(Dogan et.al., 2016)

Multiclass Logistic Regression

Multiclass Support Vector Machine

Adversarial Prediction

Statistical
Consistency?

1. The WW Model (Weston et.al., 2002)

2. The CS Model (Crammer and Singer, 1999)

3. The LLW Model (Lee et.al., 2004)



Non-Decomposable 
Metrics



Non-Decomposable Metric

Dual | Decomposable metric:

Example: 
Binary Classification with F1-score metric

Dual | Non-decomposable metric:

decomposable loss metric

sample-wise conditional distributions

F1-score non-decomposable loss metric

Full training set
conditional distributions

Size: 2 (binary)

Size: 2𝑛

Marginalization technique: optimize over marginalization distribution instead:

Size: 2𝑛
Original:

Size: 𝑛2
Marginalization:

Intractable!
Tractable!



Generic Non-Decomposable Performance Metrics
(Fathony & Kolter, AISTATS 2020)

More complex performance metric

Cover a vast range of performance metric families 
Including most common use cases of non-decomposable metrics: 
Precision, Recall, F𝛽-score, Balanced Accuracy, Specificity, Sensitivity, 
Informednes, Markedness, MCC, Kappa score, etc…

Dual | Marginalization technique:

Size: 2𝑛
Original:

Size: 2𝑛2
Marginalization:

Intractable! Tractable!

Practitioners can define their novel custom metrics
Metrics that specifically targeted to their novel problems.

&



Integration with Machine Learning Pipeline
(Fathony & Kolter, AISTATS 2020)

Programming Interface for Practitioners 
Easily incorporate custom performance metric into ML pipeline

Leaning using binary cross entropy

Leaning using AP formulation for F2-metric
*) The codes are written in Julia

F𝛽 score
definition



AP-Perf: Supports a wide variety of evaluation metrics
(Fathony & Kolter, AISTATS 2020)

Code examples for other performance metrics:

*) The codes are written in Julia

Geometric Mean of Precision and Recall (GPR) Cohen’s Kappa score



Novel Custom Metrics

*) The codes are written in Julia

Write-your-own Novel Metrics

Example:
a weighted modification to the Cohen’s Kappa score and 
the Mathews correlation coefficient (MCC)



                  
   

   

   

   

   

   

               

 
 
  

 
  
  
 
  
 
  

 
 
 
 

        

        

        

   

   

           

Empirical Results

Datasets:
20 UCI Datasets,
MNIST, Fashion MNIST

Neural Networks:
Multi Layer Perceptron, 
Convolutional NN

Performance Metrics:
1) Accuracy
2) F1 score
3) F2 score
4) Geom. Prec. Rec. (GPR)
5) Mathews Cor. Coef. (MCC)
6) Cohen’s Kappa score



Summary | Non-decomposable Metrics

Support 
Neural Network

Learning 

Easy Interface 
for Practitioners

(to optimize 
custom metrics)

SVM-Perf 
(Joachim, 2005)

Plug-in based classifiers
(Koyejo et al, 2014; Narashiman et al, 2014)

Adversarial Prediction
(Fathony & Kolter, AISTATS 2020)

Support 
Custom 
Metrics

Statistical
Consistency

Global objectives
(Eban et al, 2014)

DAME & DUPLE
(Sanyal et al, 2018)



Other Machine 
Learning Areas



Conditional Graphical Models

Application examples:
character recognition, activity 
recognition, part-of-speech tagging

(Fathony et.al., NeurIPS 2018)

Fairness in ML
(Rezaei*, Fathony*, et.al., AAAI 2020)
* equal contributors

Fairness formulation for the robust log-los 
classifier (logistic regression)

Other Machine Learning Areas

Bipartite Matching in Graphs

Application examples: 
word alignment in translation, object 
tracking in video, documents ranking

(Fathony et.al., ICML 2018)

Adversarial prediction benefits:
- aligns with the evaluation metrics (vs CRF)
- provides statistical consistency  (vs SSVM)

Overall empirical performance:
better than CRF and Structured SVM

Adversarial prediction benefits:
- computationally efficient (vs CRF)
- provides statistical consistency (vs SSVM)

Overall empirical performance:
better than the Structured SVM
(the CRF is intractable in our experiment setup)

Benefits: convex, unique solution, single predictor, good performance, faster runtime



Summary and 
Potentials



Benefits and Challenges

Adversarial Prediction vs ERM Framework

No need to think about surrogate loss
1

2

Solving the formulation
Adversarial prediction formulation can 
work directly on the original metrics

Accepts most evaluation metrics
Including continuous and discrete metrics

Solving the adversarial prediction formulation 
efficiently for specific metric may require clever 
techniques, e.g. marginalization technique

Benefits Challenges

3
Facilitates writing custom metrics
Enables practitioners to write novel custom 
metrics specifically tailored for the problem

1

2
Running time
Current runtime is noticeably slower than 
optimizing the cross-entropy objective.
Improvement is needed to solve the 
resulting dual formulation.

4
Good performances in theory and practice
Provides statistical consistency guarantee and 
performs competitively in practice.



Potential

Adversarial Prediction + Programming Interface for Custom Metrics

Potential:
Reshaping the culture of the practitioners in
applied machine learning

Now: Future:
Choose an evaluation metric from a 
popular list of metrics

Pick a model that optimizes
something else

Design a custom metric that align
specifically with the application goal

Run a model that optimizes the 
designed metric



Research Overview

Bringing
Evaluation metric + training model

in harmony

Choose an 
evaluation metric

Choose a 
model

Train the 
model

Goal-Oriented Learning
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