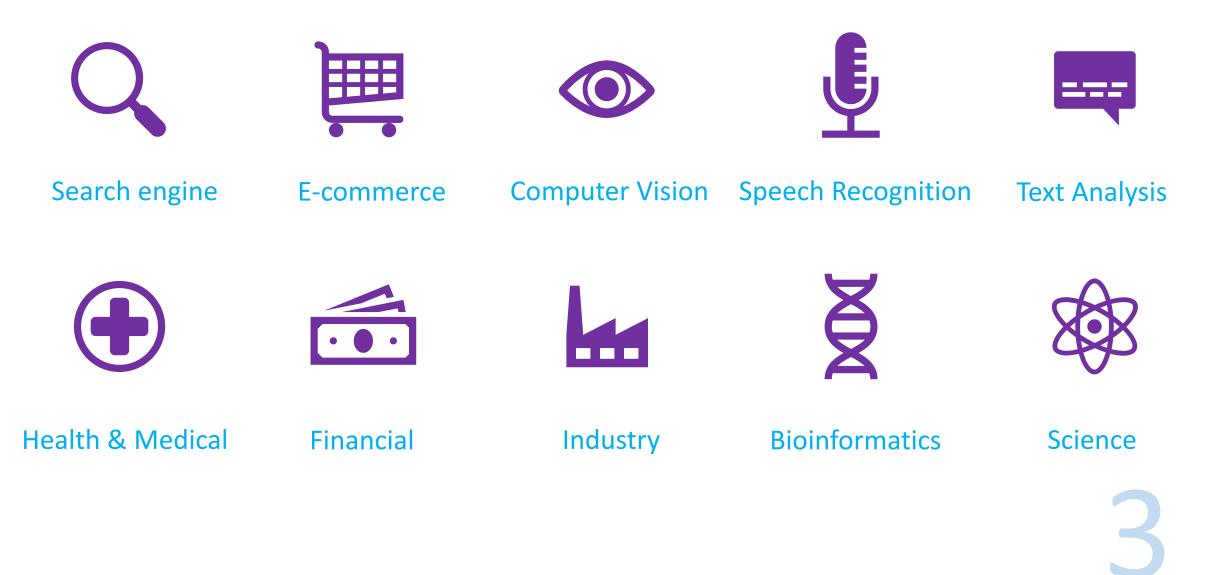
Carnegie Mellon University

Goal-Oriented Learning

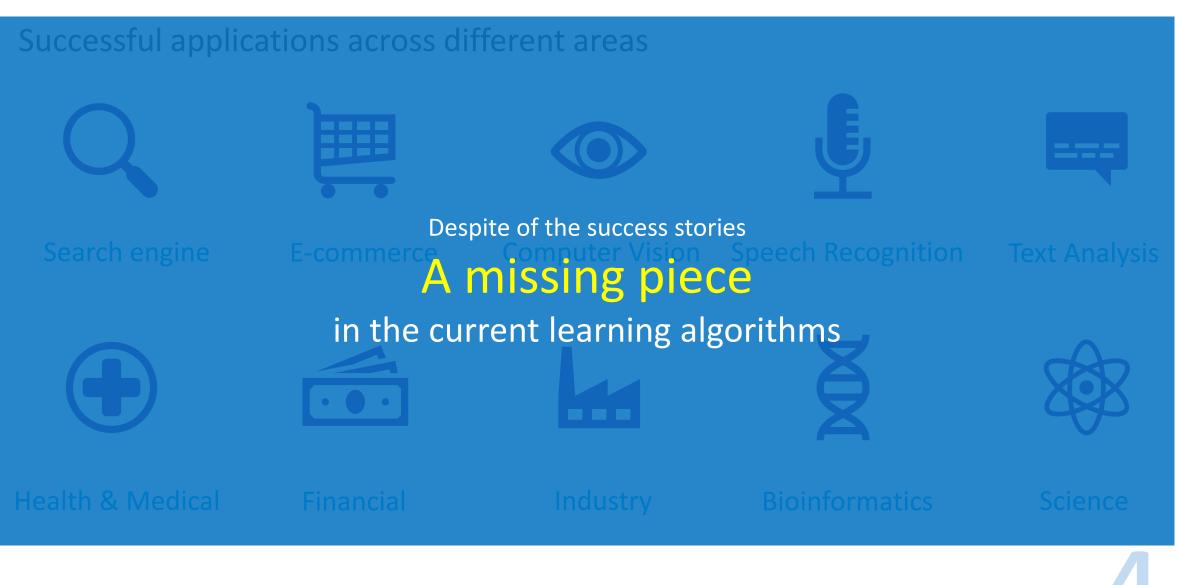
Rizal Fathony Post-Doctoral Fellow @ Carnegie Mellon University Machine Learning

Machine Learning Applications

Successful applications across different areas



Machine Learning Applications



Machine Learning Pipeline

Formulate a problem

Prepare data

Choose an evaluation metric

Choose a model

Train the model

Evaluate the performance

Example: Digit Recognition

0	0	0	0	0	0	0	0	D	٥	0	0
1	l	١	١	١	1	1	(/	1	١	1
2	ລ	2	2	ð	J	2	2	ደ	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3
4	4	٤	Y	4	4	Ч	4	4	4	4	4
5	5	5	5	5	\$	5	Б	5	5	5	5
6	G	6	6	6	6	6	6	Ь	6	Q	6
Ŧ	7	7	7	7	7	ч	7	2	7	7	2
8	T	8	8	8	8	Р	8	8	8	8	8
9	૧	9	9	9	୧	٩	9	٩	η	٩	9

Evaluation Metric:

Performance Metric: Accuracy

Accuracy = $\frac{\text{# correct prediction}}{\text{# sample}}$

Loss Metric: Zero-One Loss

Zero-One Loss = $\frac{\# \text{ incorrect prediction}}{\# \text{ sample}}$

Most widely used metric!

Accuracy metric is not always perfect

Example: Movie Rating Prediction

★★★☆☆

Evaluation Metric:

Accuracy metric: does not consider distances

Predicted vs Actual Label:

Distance $\uparrow \rightarrow$ Loss \uparrow

Loss Metric: Absolute Loss

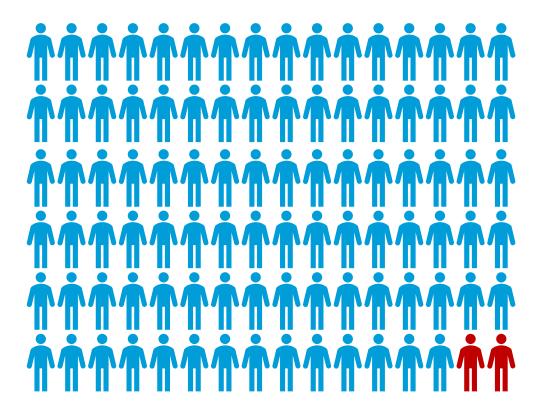
AbsoluteLoss = $\frac{1}{n}\sum_{i} |\hat{y}_{i} - y_{i}|$

 \hat{y}_i : predicted label y_i : true label

Accuracy metric is not always desirable

Example: Disease Prediction

(imbalance dataset)



98% of the samples: healthy (negative samples)2% of the samples: have disease (positive samples)

Predict all samples as negative: Accuracy metric: 98%

Confusion Matrix			Act		
			Positive	Negative	
		Positive	. True False		Predicted
	Pred.	Positive	Pos. (TP)	Pos. (FP)	Pos. (PP)
		Negotivo	False	True	Predicted
		Negative	Neg. (FN)	Neg. (TN)	Neg. (PN)
			Actual	Actual	All Data
			Pos. (AP)	Neg. (AN)	(ALL)

Precision = $\frac{\# \text{ true positive}}{\# \text{ predicted positive}}$ Recall = $\frac{\# \text{ true positive}}{\# \text{ actual positive}}$ Specificity = $\frac{\# \text{ true negative}}{\# \text{ actual negative}}$ Sensitivity = $\frac{\# \text{ true positive}}{\# \text{ actual positive}}$

 $F1-score = \frac{2 \cdot precision \cdot recall}{precision + recall}$

 $F_{\beta}\text{-score} = \frac{(1 + \beta^2) \cdot \text{precision} \cdot \text{recall}}{(\beta^2 \cdot \text{precision}) + \text{recall}}$

External data is needed

Example: Stock market prediction

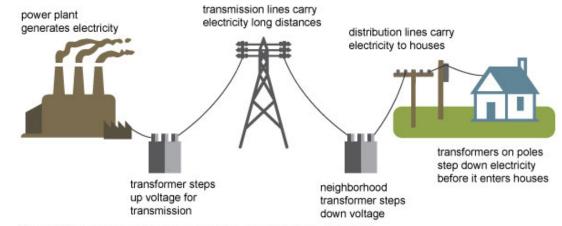
Prediction tasks:

Predict the stock prices

Evaluation metric:

Revenue when making investments based on the prediction

Example: Electricity demand prediction



Source: Adapted from National Energy Education Development Project (public domain)

Prediction tasks:

Predict the electricity demands on a certain time

Evaluation metric: The cost of electricity generation given the prediction

9

Machine Learning Pipeline

Formulate a problem

Prepare data

E

Choose an evaluation metric 3

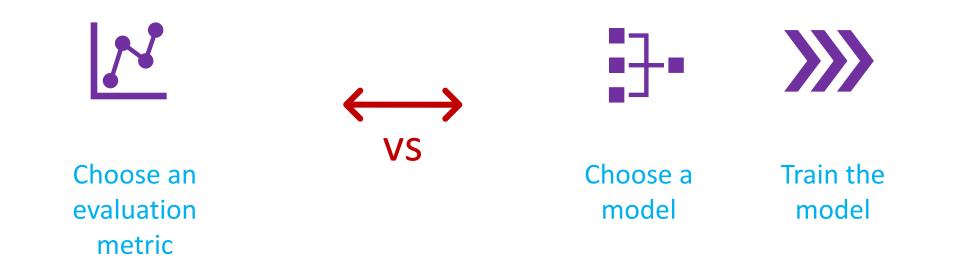
Choose a model

Train the model

Evaluate the performance

Goal vs Training Model Mismatch (1)

Example: Disease prediction



Goal: optimize specificity & sensitivity

Most of ML models:

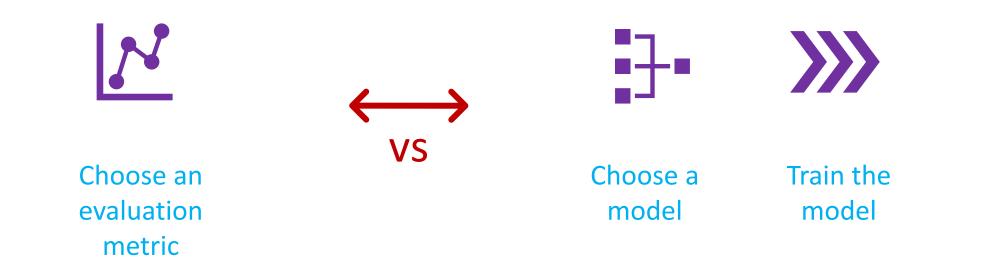
- No support for specificity & sensitivity metric
- Optimize the cross-entropy objective

(a proxy for accuracy metric)

11

Goal vs Training Model Mismatch (2)

Example: Electricity demand prediction



Goal: minimize the cost of electricity production

Most of the existing models:

- optimize cross-entropy (discrete models)
- optimize mean squared error (continuous models)

12

Goal vs Training Model Mismatch (3)

Machine Learning Tasks	Evaluation Metrics	Common Training Objectives
Medical/health areas	Specificity & sensitivity	Cross entropy
Text classification	Precision, Recall, F1-score	Cross entropy
Classification with imbalance data	F1-score, AUC, MCC	Cross entropy
Rating prediction	Absolute loss, Kappa score	Cross entropy, MSE
Electricity prediction	Electricity production cost	Cross entropy, MSE
Stock market prediction	Revenue	MSE

Discrepancy: Evaluation metrics vs training objective

Inferior performance results (Cortes & Mohri, 2004; Eban et.al, 2016)

Real World Consequence

Discrepancy: Evaluation metrics vs training objective

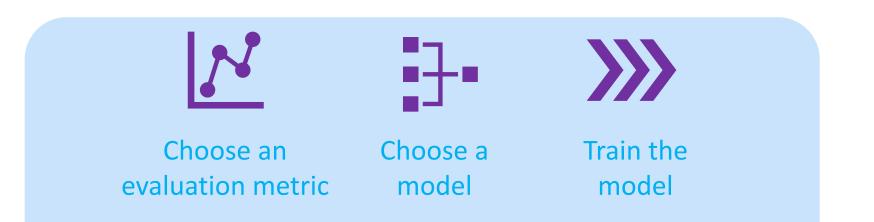
Inferior performance results

Real world consequence

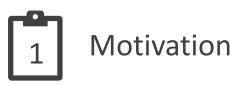
Machine Learning Tasks	Results	Real world consequence	
Disease prediction	Suboptimal prediction performance	Inaccurate disease test	
Online advertising prediction	Misplaced ads	Revenue Lost	
Electricity prediction	Over-production	Increasing production cost	
Stock market prediction	Suboptimal prediction	Revenue Lost	

Bringing Evaluation metric + training model in harmony

Goal-Oriented Learning



Outline of the Talk

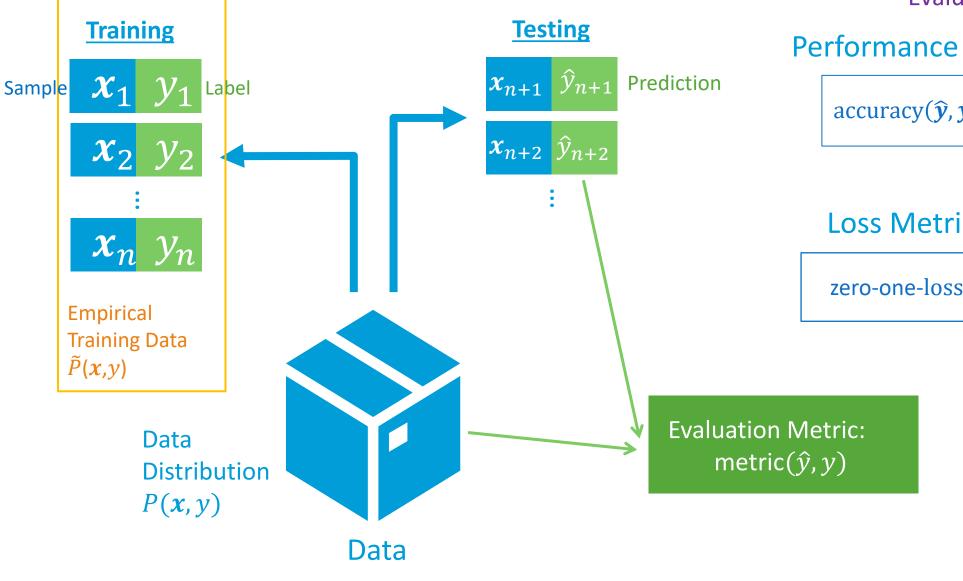


A New Learning Framework

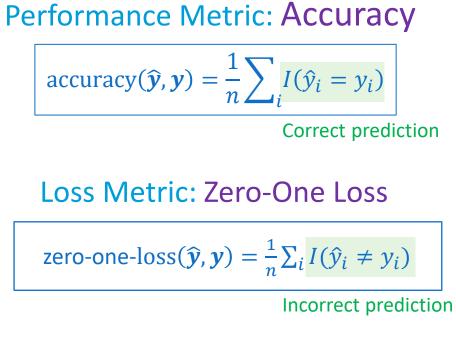
Current Approaches

Approach for designing learning algorithms

Supervised Learning | Binary Classification



Evaluation Metric:



18

Standard Approach for Learning Algorithms

Empirical Risk Minimization (ERM) [Vapnik, 1992]

- Assumes a family of parametric hypothesis function *f* (e.g. linear discriminator)
- Finds the hypothesis f^* that minimize the empirical risk:

$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} \frac{\log(f(\mathbf{x}_{i}), y_{i})}{\Pr(\mathbf{x}_{i})} = \min_{f} \mathbb{E}_{\tilde{P}(\mathbf{x}, y)} \begin{bmatrix}\log(f(\mathbf{x}_{i}), y) \\ \log(f(\mathbf{x}_{i}), y)\end{bmatrix}$$

$$= \min_{f} \mathbb{E}_{\tilde{P}(\mathbf{x}, y)} \begin{bmatrix}\log(f(\mathbf{x}), y) \\ \log(f(\mathbf{x}), y)\end{bmatrix}$$

$$= \min_{f} \mathbb{E}_{\tilde{P}(\mathbf{x}, y)} \begin{bmatrix}\log(f(\mathbf{x}), y) \\ \log(f(\mathbf{x}), y)\end{bmatrix}$$

Intractable optimization!

Since the zero-one loss (accuracy) is: discrete & non-continuous (Steinwart and Christmann, 2008)

19

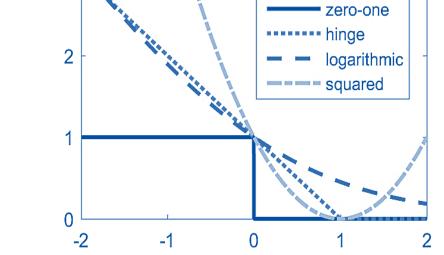
Surrogate Losses

ERM: prescribes the use of convex surrogate loss to avoid intractability

Example: Binary classification with accuracy metric

Original loss metric: discrete

 $\min_{f} \mathbb{E}_{\tilde{P}(\mathbf{x},y)} \left[\text{ZeroOneLoss}(f(\mathbf{X}), Y) \right]$



Support Vector Machine (SVM)

$$\min_{f} \mathbb{E}_{\tilde{P}(\mathbf{x},y)} \left[\underset{\text{Convex surrogate loss}}{\text{HingeLoss}} (f(\mathbf{x}), y) \right]$$

Logistic Regression (LR)

Probabilistic prediction

$$\min_{f} \mathbb{E}_{\tilde{P}(\mathbf{x},y)} \left[\text{LogLoss}(\hat{P}_{f}(\hat{y}|\mathbf{x}), y) \right]$$

Convex surrogate loss

More Complex Evaluation Metrics

ERM: Extend the binary surrogate losses to the settings.

Binary classification | accuracy

SVM & Logistic Regression:

- ✓ Perform well in practice
- ✓ Statistical consistency
- SVM: V Dual sparsity (solution depends on few samples)

Multiclass classification | accuracy

Multiclass SVMs: many formulations. Each formulation lacks one or more:

- X Lacks statistical consistency
- X Do not perform well in practice

(Tewari & Bartlett, 2006; Liu 2007; Dogan et.al. 2016)

More complex evaluation metrics

- Logistic Regression-based model: None
- \mathbf{X} No model for complex metrics

SVM-based model: SVM-perf (Joachims, 2005)

- ✓ Works on many complex metrics
- **X** Lacks statistical consistency
- X Does not provide easy tool to extend the method to custom metrics

Most of other models:

X Hard to extend to custom metrics

21

Neural Networks Learning

Currently the popular machine learning model. Use the 'classical' surrogate losses as the last layer (objective).

Binary & multiclass classification

Objective: Cross entropy objective = Logistic regression (log-loss surrogate)

More complex evaluation metrics

Most of 'classical' models:

➤ Not applicable to NN learning

NN-targeted models:

(Eban et.al, 2016; Song et.al, 2016; Sanyal, et.al, 2018)

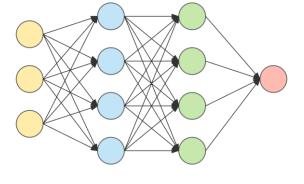
- X Only support few metrics
- X No support for custom metrics

Practitioners' perspective

- Aim to optimize an evaluation metric tailored specifically for their problem. (e.g. specificity, sensitivity, F-beta score)
- No learning models can optimize their specific evaluation metrics.

Choose the standard cross entropy instead

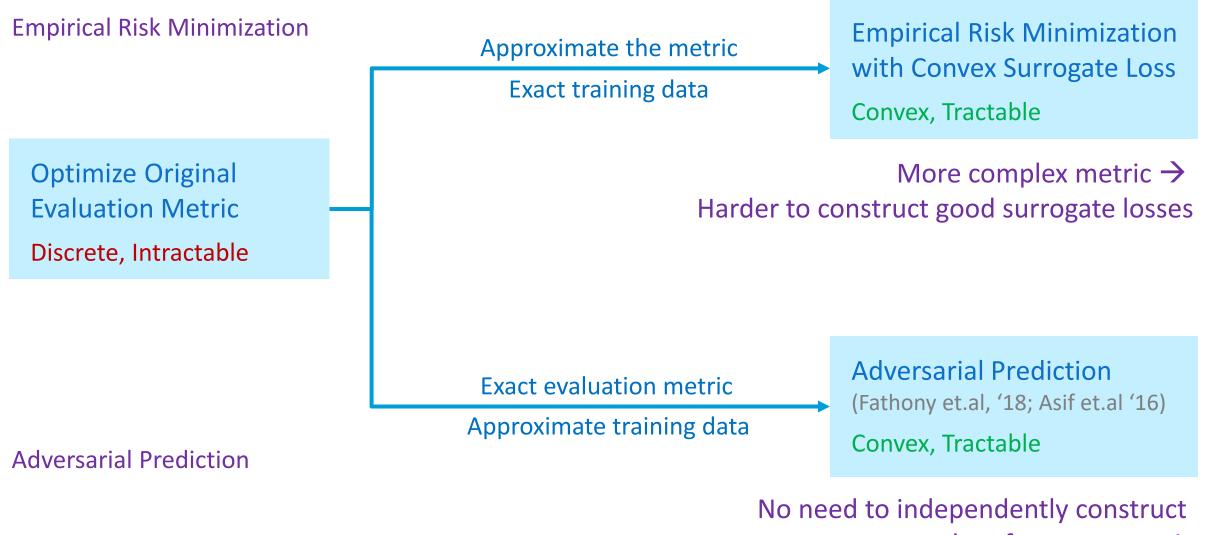
Mismatch between Goal vs Training Model



A New Learning Framework

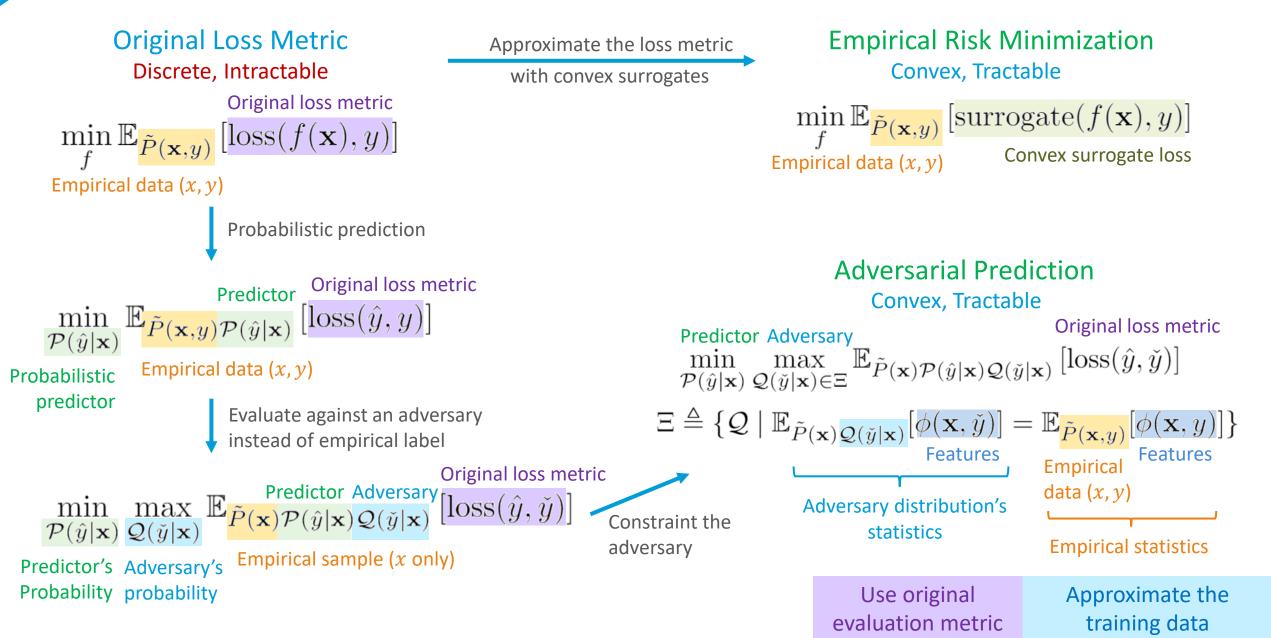
A different approach on designing learning algorithms

A Different Approach in Learning Algorithm Design

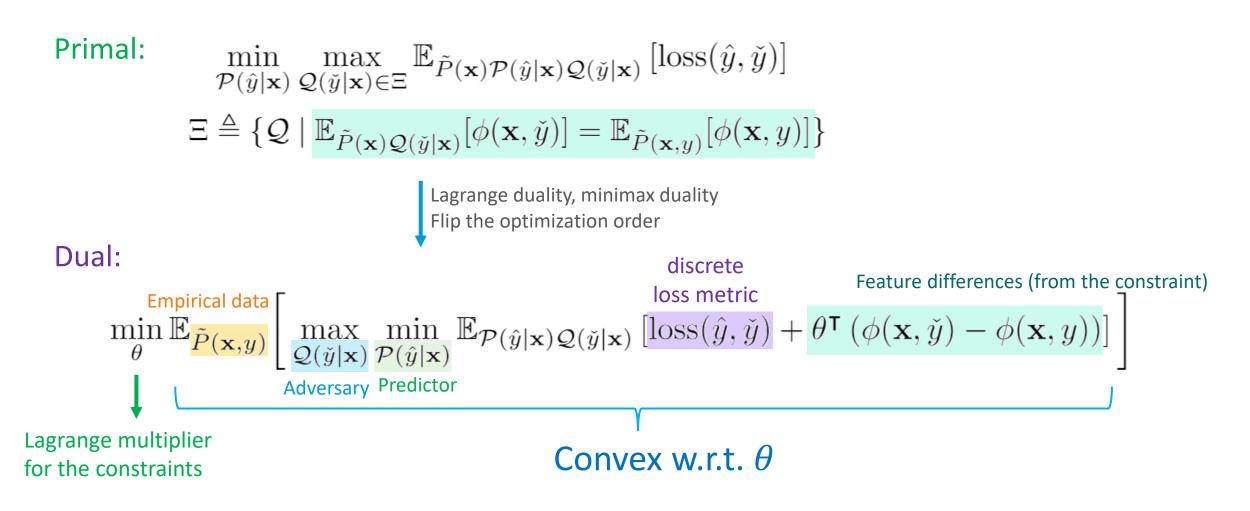


surrogate loss for every metric

Adversarial Prediction (Fathony et.al, 2018; Asif et.al, 2016)



Adversarial Prediction: Dual Formulation



ERM: How to construct a surrogate loss for a given evaluation metric?

Adversarial Prediction:

How to solve the maximin problem above?

Designing Learning Algorithms

Adversarial prediction formulations for various machine learning tasks

Evaluation Metrics

Decomposable Metrics

Can be decomposed into sample-wise sum

Example: accuracy, ordinal, taxonomybased, classification with abstention metrics, and cost-sensitive metrics.

Binary and multiclass classification

Non-Decomposable Metrics

Cannot be decomposed into sample-wise sum

Example: F1-score, GPR, informedness, MCC, Kappa score.

Binary and multiclass classification

Decomposable Metrics

Decomposable Metrics

(Fathony et.al, NeurIPS 2016 & 2017, CoRR 2018)

Decomposable metrics:

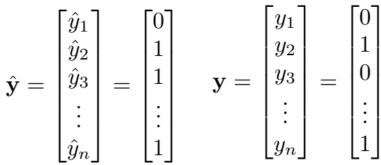
$$loss(\hat{\mathbf{y}}, \mathbf{y}) = \frac{1}{n} \sum_{i} \frac{loss(\hat{y}_i, y_i)}{Sample-wise}$$

the whole training set

г

loss metric

Vector notations:



Example for binary classification

Dual:

$$\min_{\theta} \mathbb{E}_{\tilde{P}(\mathbf{x},y)} \left[\max_{\mathcal{Q}(\check{y}|\mathbf{x})} \min_{\mathcal{P}(\hat{y}|\mathbf{x})} \mathbb{E}_{\mathcal{P}(\hat{y}|\mathbf{x})} \mathbb{E}_{\mathcal{P}(\hat{y}|\mathbf{x})} \left[loss(\hat{y},\check{y}) + \theta^{\mathsf{T}} \left(\phi(\mathbf{x},\check{y}) - \phi(\mathbf{x},y) \right) \right] \right]$$

Simple loss metrics: Analytical solution

Example: - Zero-one loss metric (accuracy performance) [NeurIPS 2016]

- Absolute & squared loss metric [NeurIPS 2017]
- Classification with abstention [CoRR 2018]

Technique: Analyze the Nash equilibrium solution of the zero-sum game.

Decomposable Metrics | Complex Loss Metric

(Fathony et.al, CoRR 2018)

Decomposable metrics:

$$loss(\hat{\mathbf{y}}, \mathbf{y}) = \frac{1}{n} \sum_{i} loss(\hat{y}_{i}, y_{i})$$
Loss metric for
the whole training set loss metric
$$loss metric$$
Dual:
$$\min_{\theta} \mathbb{E}_{\tilde{P}(\mathbf{x}, y)} \left[\max_{\mathcal{Q}(\check{y}|\mathbf{x})} \min_{\mathcal{P}(\hat{y}|\mathbf{x})} \mathbb{E}_{\mathcal{P}(\hat{y}|\mathbf{x})} \mathcal{Q}(\check{y}|\mathbf{x}) \left[loss(\hat{y}, \check{y}) + \theta^{\mathsf{T}} \left(\phi(\mathbf{x}, \check{y}) - \phi(\mathbf{x}, y) \right) \right] \right]$$

More complex losses: Reformulation as a Linear Program

Example: - Taxonomy-based loss metric

- Cost-sensitive loss metric

Technique: Reformulate as a linear program, and use standard LP solver size of the LP: *k*+1, where *k* = # of class

31

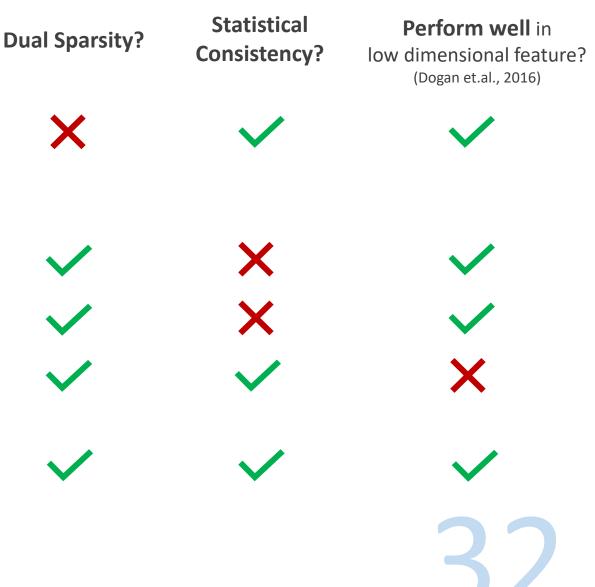
Example: Multiclass Classification with Accuracy Metric (Fathony et.al, NeurIPS 2016)

Multiclass Logistic Regression

Multiclass Support Vector Machine

- 1. The WW Model (Weston et.al., 2002)
- 2. The CS Model (Crammer and Singer, 1999)
- 3. The LLW Model (Lee et.al., 2004)

Adversarial Prediction



Non-Decomposable Metrics

Non-Decomposable Metric

Example:

Binary Classification with F1-score metric

$$F1\text{-score}(\hat{\mathbf{y}}, \mathbf{y}) = \frac{2 * \text{Precision} * \text{Recall}}{\text{Precision} + \text{Recall}} = \frac{2 \text{ TP}}{\text{PP} + \text{AP}} = \frac{2 \sum_{i} \hat{y}_{i} y_{i}}{\sum_{i} \hat{y}_{i} + \sum_{i} y_{i}}$$

Dual | Decomposable metric:

$$\min_{\theta} \frac{1}{n} \sum_{i} \left[\max_{\mathcal{Q}(\check{y}_{i}|\mathbf{x}_{i})} \min_{\mathcal{P}(\hat{y}_{i}|\mathbf{x}_{i})} \sum_{\hat{y}_{i},\check{y}_{i}} \frac{\mathcal{P}(\hat{y}_{i}|\mathbf{x}_{i})\mathcal{Q}(\check{y}_{i}|\mathbf{x}_{i})}{\hat{y}_{i},\check{y}_{i}} \left[loss(\hat{y}_{i},\check{y}_{i}) + \theta^{\mathsf{T}} \left(\phi(\mathbf{x}_{i},\check{y}_{i}) - \phi(\mathbf{x}_{i},y_{i}) \right) \right] \right] \xrightarrow{\mathcal{P}(\hat{y}_{i}|\mathbf{x}_{i})}{\text{Size: 2 (binary)}}$$

Dual | Non-decomposable metric:

F1-score non-decomposable loss metric

Marginalization technique: optimize over marginalization distribution instead:

 $\mathcal{P}(\hat{\mathbf{y}}|\mathbf{x})$ **Original:** Size: 2^n Intractable!

		Act		
		Positive	Negative	
red.	Positive	True	False	Predicted
	rositive	Pos. (TP)	Pos. (FP)	Pos. (PP)
	Negative	False	True	Predicted
\mathbf{P}		Neg. (FN)	Neg. (TN)	Neg. (PN)
		Actual	Actual	All Data
		Pos. (AP)	Neg. (AN)	(ALL)

 $\mathcal{P}(\hat{y}_i | \mathbf{x}_i)$

Generic Non-Decomposable Performance Metrics

(Fathony & Kolter, AISTATS 2020)

More complex performance metric

$$\operatorname{metric}(\hat{\mathbf{y}}, \mathbf{y}) = \sum_{j} \frac{a_{j} \mathsf{TP} + b_{j} \mathsf{TN} + f_{j} (\mathsf{PP}, \mathsf{AP})}{g_{j} (\mathsf{PP}, \mathsf{AP})}$$

Cover a vast range of performance metric families

Including most common use cases of non-decomposable metrics: Precision, Recall, F_{β} -score, Balanced Accuracy, Specificity, Sensitivity, Informednes, Markedness, MCC, Kappa score, etc...

Practitioners can define their novel custom metrics

Metrics that specifically targeted to their novel problems.

Dual | Marginalization technique:

Original:
$$\mathcal{P}(\hat{\mathbf{y}}|\mathbf{x})$$

Size: 2^n
Intractable!Marginalization: $\mathcal{P}(\hat{y}_i = 1, \sum_i \hat{y}_i = k | \mathbf{x}) \& \mathcal{P}(\hat{y}_i = 0, \sum_i \hat{y}_i = k)$
Size: $2n^2$
Tractable!Size: $2n^2$
Tractable!

]			Act		
			Positive	Negative	
		Positive	True	False	Predicted
		rositive	Pos. (TP)	Pos. (FP)	Pos. (PP)
Pred	Nogativo	False	True	Predicted	
6	고	Negative	Neg. (FN)	Neg. (TN)	Neg. (PN)
			Actual	Actual	All Data
			Pos. (AP)	Neg. (AN)	(ALL)

Integration with Machine Learning Pipeline

(Fathony & Kolter, AISTATS 2020)

Programming Interface for Practitioners

Easily incorporate custom performance metric into ML pipeline

model = Chain(
 Dense(nvar, 100, relu),
 Dense(100, 100, relu),
 Dense(100, 1), vec)

objective(x, y) = mean(logitbinarycrossentropy(model(x), y))

opt = ADAM(1e-3)
Flux.train!(objective, params(model),
 train_set, opt)

Leaning using binary cross entropy

```
model = Chain(
   Dense(nvar, 100, relu),
   Dense(100, 100, relu),
```

```
Dense(100, 1), vec)
```

```
objective(x, y) = ap_objective(model(x), y, f2_score)
```

```
opt = ADAM(1e-3)
```

Flux.train!(objective, params(model), train_set, opt)

Leaning using AP formulation for F2-metric

*) The codes are written in Julia

AP-Perf: Supports a wide variety of evaluation metrics

(Fathony & Kolter, AISTATS 2020)

Code examples for other performance metrics:

```
Geometric Mean of Precision and Recall (GPR)
```

```
\frac{\text{TP}}{\sqrt{\text{PP} \cdot \text{AP}}}
```

```
@metric GM_PrecRec # Geometric Mean of Prec and Rec
function define(::Type{GM_PrecRec}, C::ConfusionMatrix)
  return C.tp / sqrt(C.ap * C.pp)
end
gpr = GM_PrecRec()
special case positive!(gpr)
```

Cohen's Kappa score

$$\frac{(~{\rm TP}+{\rm TN}~)/~{\rm ALL}~-(~{\rm AP}~\cdot~{\rm PP}~+~{\rm AN}~\cdot~{\rm PN}~)/~{\rm ALL}~^2}{1-(~{\rm AP}~\cdot~{\rm PP}~+~{\rm AN}~\cdot~{\rm PN}~)/~{\rm ALL}~^2}$$

```
@metric Kappa
function define(::Type{Kappa}, C::ConfusionMatrix)
    pe = (C.ap * C.pp + C.an * C.pn) / C.all^2
    num = (C.tp + C.tn) / C.all - pe
    den = 1 - pe
    return num / den
end
kappa = Kappa()
special_case_positive!(kappa)
special_case_negative!(kappa)
```

Novel Custom Metrics

Write-your-own Novel Metrics

```
@metric NovelMetric
function define(::Type{NovelMetric}, C::ConfusionMatrix)
  # write the definition of your new metric
end
novel metric = NovelMetric()
```

Example:

a weighted modification to the Cohen's Kappa score and the Mathews correlation coefficient (MCC)

@metric NovelMetric function define(::Type{NovelMetric}, C::ConfusionMatrix) pe = (0.7 * C.ap * C.pp + 0.3 * C.an * C.pn) / C.all^2 num = (0.7 * C.tp + 0.3 * C.tn) / C.all - pe den = 1 - pe kappa = num / den

```
num2 = C.tp / C.all - (C.ap * C.pp) / C.all^2
den2 = sqrt(C.ap * C.pp * C.an * C.pn) / C.all^2
mcc = num2 / den2
```

```
return 0.3 * kappa + 0.7 * mcc
end
```

```
novel_metric = NovelMetric()
special_case_positive!(novel_metric)
special_case_negative!(novel_metric)
```

*) The codes are written in Julia

Empirical Results

Datasets: 20 UCI Datasets, MNIST, Fashion MNIST

Neural Networks: Multi Layer Perceptron, Convolutional NN

Performance Metrics:

1) Accuracy

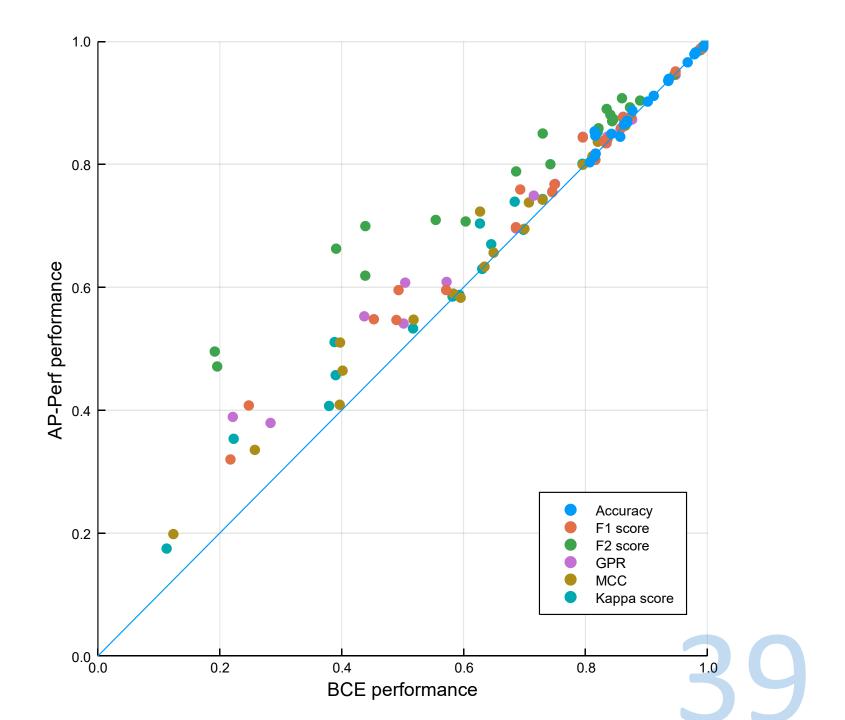
2) F1 score

3) F2 score

4) Geom. Prec. Rec. (GPR)

5) Mathews Cor. Coef. (MCC)

6) Cohen's Kappa score



Summary | Non-decomposable Metrics

	Statistical Consistency	Support Neural Network Learning	Support Custom Metrics	Easy Interface for Practitioners (to optimize custom metrics)
SVM-Perf (Joachim, 2005)	×	×		×
Plug-in based classifiers (Koyejo et al, 2014; Narashiman et al, 2014)		X	×	×
Global objectives (Eban et al, 2014)	X		×	×
DAME & DUPLE (Sanyal et al, 2018)	X		×	X
Adversarial Prediction (Fathony & Kolter, AISTATS 2020)				4 0

Other Machine Learning Areas

Other Machine Learning Areas

Conditional Graphical Models

(Fathony et.al., NeurIPS 2018)

Application examples:

character recognition, activity recognition, part-of-speech tagging

Adversarial prediction benefits:

- aligns with the evaluation metrics (vs CRF)
- provides statistical consistency (vs SSVM)

Overall empirical performance: better than CRF and Structured SVM

Bipartite Matching in Graphs (Fathony et.al., ICML 2018) Application examples:

word alignment in translation, object tracking in video, documents ranking

Adversarial prediction benefits:

 - computationally efficient (vs CRF)
 - provides statistical consistency (vs SSVM)
 Overall empirical performance: better than the Structured SVM

(the CRF is intractable in our experiment setup)

Fairness in ML

(Rezaei*, Fathony*, et.al., AAAI 2020) * equal contributors Fairness formulation for the robust log-los classifier (logistic regression)

Benefits: convex, unique solution, single predictor, good performance, faster runtime

Summary and Potentials

Benefits and Challenges

Adversarial Prediction vs ERM Framework

Benefits

No need to think about surrogate loss

Adversarial prediction formulation can work directly on the original metrics

Accepts most evaluation metrics Including continuous and discrete metrics

Facilitates writing custom metrics

Enables practitioners to write novel custom metrics specifically tailored for the problem

Good performances in theory and practice

Provides statistical consistency guarantee and performs competitively in practice.

Challenges

Solving the formulation

Solving the adversarial prediction formulation efficiently for specific metric may require clever techniques, e.g. marginalization technique

Running time

Current runtime is noticeably slower than optimizing the cross-entropy objective. Improvement is needed to solve the resulting dual formulation.

Potential

Adversarial Prediction + Programming Interface for Custom Metrics

Potential: Reshaping the culture of the practitioners in applied machine learning

Now:

- Choose an evaluation metric from a popular list of metrics
- Pick a model that optimizes something else

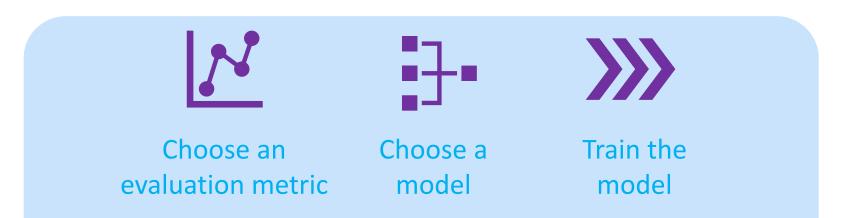
Future:

Design a custom metric that align specifically with the application goal



Bringing Evaluation metric + training model in harmony

Goal-Oriented Learning



References

- **| UAI 2015 | Adversarial Cost-Sensitive Classification** Kaiser Asif, Wei Xing, Sima Behpour, and Brian D. Ziebart.
- | NeurIPS 2016 | Adversarial Multiclass Classification: A Risk Minimization Perspective Rizal Fathony, Angi Liu, Kaiser Asif, Brian D. Ziebart.
- | NeurIPS 2017 | Adversarial Surrogate Losses for Ordinal Regression Rizal Fathony, Mohammad Bashiri, Brian D. Ziebart.
- | ArXiV 2018 | Consistent Robust Adversarial Prediction for General Multiclass Classification Rizal Fathony, Kaiser Asif, Anqi Liu, Mohammad Bashiri, Wei Xing, Sima Behpour, Xinhua Zhang, Brian D. Ziebart.
- | NeurIPS 2018 | Distributionally Robust Graphical Models Rizal Fathony, Ashkan Rezaei, Mohammad Ali Bashiri, Xinhua Zhang, and Brian Ziebart
- | ICML 2018 | Efficient and Consistent Adversarial Bipartite Matching Rizal Fathony*, Sima Behpour*, Xinhua Zhang, and Brian Ziebart
- **| AAAI 2020 | Fairness for Robust Log Loss Classification** Ashkan Rezaei*, Rizal Fathony*, Omid Memarrast, and Brian Ziebart
- | AISTATS 2020 | AP-Perf: Incorporating Generic Performance Metrics in Differentiable Learning Rizal Fathony and Zico Kolter

Thank You

