Performance-Aligned Learning Algorithms with Statistical Guarantees

Rizal Zaini Ahmad Fathony

Committee: Prof. Brian Ziebart (Chair)

Prof. Bhaskar DasGupta

Prof. Xinhua Zhang

Prof. Lev Reyzin

Prof. Simon Lacoste-Julien

Outline

"New learning algorithms that align with performance/loss metrics and provide the statistical guarantees of Fisher consistency"

1 Introduction & Motivation

4 Bipartite Matching in Graphs

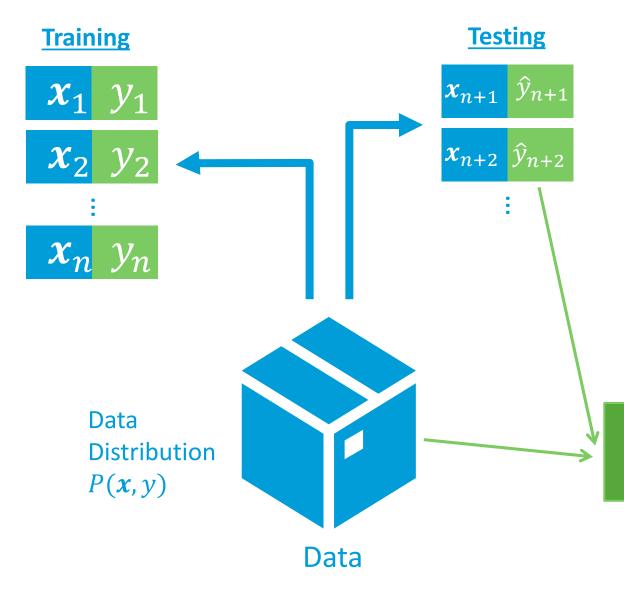
2 General Multiclass Classification

5 Conclusion & Future Directions

3 Graphical Models

Introduction and Motivation

Supervised Learning



Multiclass Classification

- Zero one loss / accuracy metric
- Absolute loss (for ordinal regression)

Multivariate Performance

- F1-score
- Precision@k

Structured Prediction

Hamming loss (sum of 0-1 loss)

Loss/Performance Metrics: $loss(\hat{y}, y) / score(\hat{y}, y)$

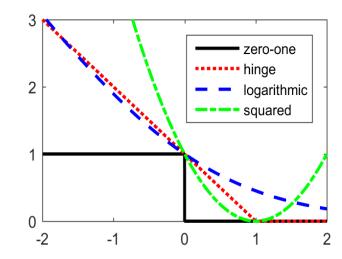
Empirical Risk Minimization (ERM) (Vapnik, 1992)

- Assume a family of parametric hypothesis function f (e.g. linear discriminator)
- Find the hypothesis f^* that minimize the empirical risk:

$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} \operatorname{loss}(f(\mathbf{x}_{i}), y_{i}) = \min_{f} \mathbb{E}_{\mathbf{X}, Y \sim \tilde{P}} \left[\operatorname{loss}(f(\mathbf{X}), Y) \right]$$

Non-convex, non-continuous metrics → Intractable optimization

Convex surrogate loss need to be employed!



A desirable property of convex surrogates:

Fisher Consistency

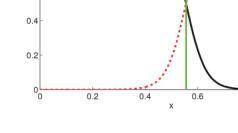
Under ideal condition: optimize surrogate → minimizes the loss metric (given the true distribution and fully expressive model)

Two Main Approaches

Probabilistic Approach

- Construct prediction probability model
- Employ the logistic loss surrogate

Logistic Regression, Conditional Random Fields (CRF)

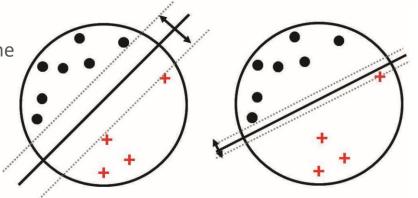


p(y=1|x)

Large-Margin Approach

- Maximize the margin that separates correct prediction from the incorrect one
- Employ the hinge loss surrogate

Support Vector Machine (SVM), Structured SVM



p(y=2|x)

^{*} Pictures are taken from MLPP book (Kevin Murphy)

Multiclass Classification | Logistic Regression vs SVM

Multiclass Logistic Regression

Multiclass SVM

Statistical guarantee of Fisher consistency (minimizes the zero-one loss metric in the limit)

Current multiclass SVM formulations:

- Lack Fisher consistency property, or
- Doesn't perform well in practice

No dual parameter sparsity

Computational efficiency (via the kernel trick & dual parameter sparsity)

Structured Prediction | CRF vs Structured SVM

Conditional Random Fields (CRF)

Structured SVM

No Fisher consistency guaranteees

No easy mechanism to incorporate customized loss/performance metrics

Flexibility to incorporate customized loss/performance metrics

Computation of the normalization term may be intractable

Relatively more efficient in computation

New Learning Algorithms?

Align better with the loss/performance metric (by incorporating the metric into its learning objective)

Provide Fisher consistency guarantee

Computationally efficient

Perform well in practice

How?

Robust adversarial learning approach

"What predictor best maximizes the performance metric (or minimizes the loss metric) in the worst case given the statistical summaries of the empirical distributions?"

Performance-Aligned Surrogate Losses for General Multiclass Classification

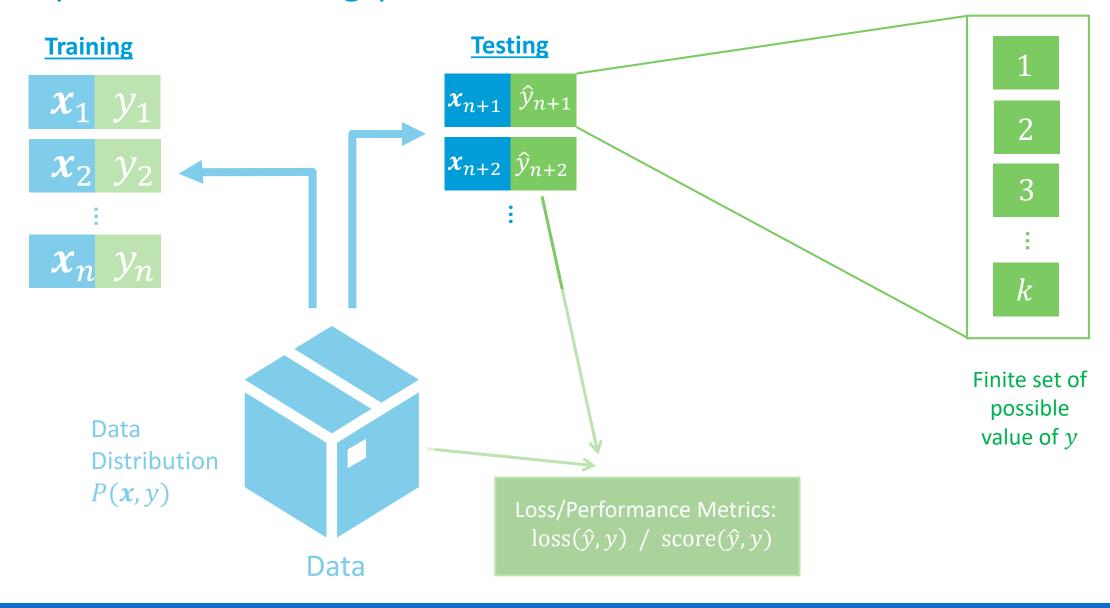
Based on:

Fathony, R., Asif, K., Liu, A., Bashiri, M. A., Xing, W., Behpour, S., Zhang, X., and Ziebart, B. D.: *Consistent robust adversarial prediction for general multiclass classification*. arXiv preprint arXiv:1812.07526, 2018. (Submitted to JMLR).

Fathony, R., Liu, A., Asif, K., and Ziebart, B.: Adversarial multiclass classification: A risk minimization perspective. NIPS 2016.

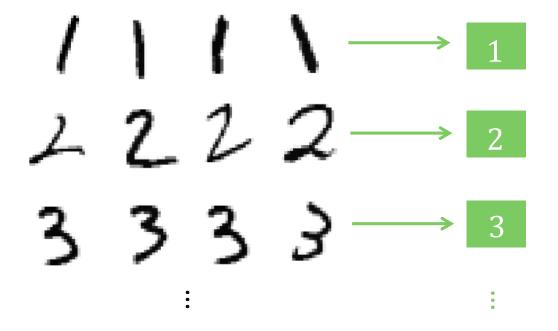
Fathony, R., Bashiri, M. A., and Ziebart, B.: Adversarial surrogate losses for ordinal regression. NIPS 2017.

Supervised Learning | Multiclass Classification



Multiclass Classification | Zero-One Loss

Example: Digit Recognition



Loss Metric: Zero-One Loss

Loss Metric: $loss(\hat{y}, y) = I(\hat{y} \neq y)$

$$\mathbf{L} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Multiclass Classification | Ordinal Classification

Example: Movie Rating Prediction

Loss Metric: Absolute Loss

Loss Metric: $loss(\hat{y}, y) = |\hat{y} - y|$

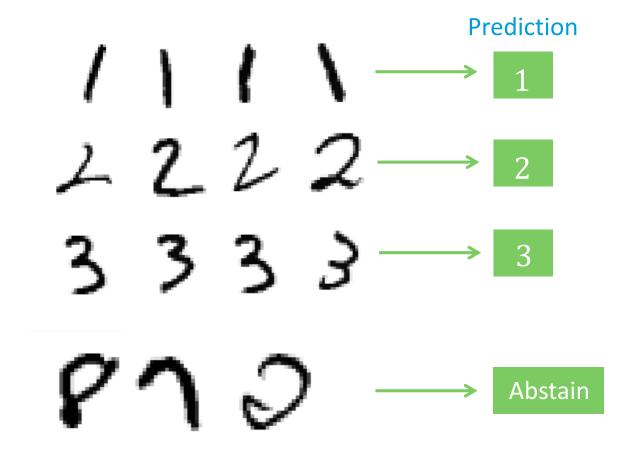
$$\mathbf{L} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 & 3 \\ 2 & 1 & 0 & 1 & 2 \\ 3 & 2 & 1 & 0 & 1 \\ 4 & 3 & 2 & 1 & 0 \end{bmatrix}$$

Predicted vs Actual Label:

Distance $\uparrow \rightarrow Loss \uparrow$

Multiclass Classification | Classification with Abstention

Predictor can say 'abstain'



Loss Metric: Abstention Loss

Loss Metric:
$$loss(\hat{y}, y) = \begin{cases} \alpha & \text{if abstain} \\ I(\hat{y} \neq y) & \text{otherwise} \end{cases}$$

$$\mathbf{L} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ \alpha & \alpha & \alpha & \alpha & \alpha \end{bmatrix}$$

Multiclass Classification | Other Loss Metrics

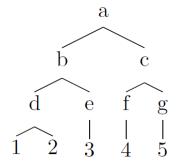
Squared loss metric

$$loss(\hat{y}, y) = (\hat{y} - y)^2$$

$$\begin{bmatrix} 0 & 1 & 4 & 9 & 16 \\ 1 & 0 & 1 & 4 & 9 \\ 4 & 1 & 0 & 1 & 4 \\ 9 & 4 & 1 & 0 & 1 \\ 16 & 9 & 4 & 1 & 0 \end{bmatrix}$$

Taxonomy-based loss metric

$$loss(\hat{y}, y) = h - v(\hat{y}, y) + 1$$



$$\begin{bmatrix} 0 & 1 & 2 & 3 & 3 \\ 1 & 0 & 2 & 3 & 3 \\ 2 & 2 & 0 & 3 & 3 \\ 3 & 3 & 3 & 0 & 2 \\ 3 & 3 & 3 & 2 & 0 \end{bmatrix}$$

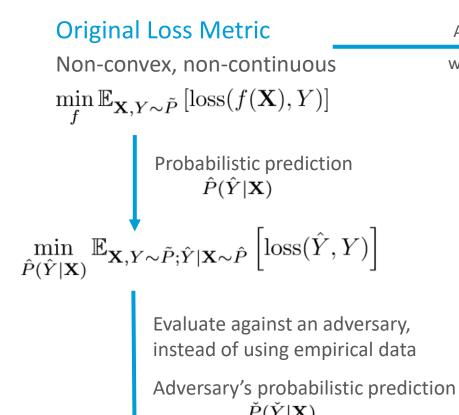
Cost-sensitive loss metric

$$loss(\hat{y}, y) = \mathbf{C}_{\hat{y}, y}$$

$$\begin{bmatrix} 0 & 3 & 2 & 3 \\ 1 & 0 & 7 & 4 \\ 3 & 2 & 0 & 2 \\ 5 & 4 & 3 & 0 \end{bmatrix}$$

Robust Adversarial Learning

Robust Adversarial Learning (Grunwald & Dawid, 2004; Delage & Ye, 2010; Asif et.al, 2015)



with convex surrogates

Empirical Risk Minimization

$$\min_{f} \mathbb{E}_{\mathbf{X}, Y \sim \tilde{P}} \left[\text{surrogate}(f(\mathbf{X}), Y) \right]$$

$$\hat{y} = \operatorname*{argmax}_{j} f_{j}(\mathbf{x})$$

Robust Adversarial Learning

$$\min_{\hat{P}(\hat{Y}|\mathbf{X})} \max_{\check{P}(\check{Y}|\mathbf{X})} \mathbb{E}_{\mathbf{X},Y \sim \tilde{P}; \hat{Y}|\mathbf{X} \sim \hat{P}; \check{Y}|\mathbf{X} \sim \check{P}} \left[loss(\hat{Y}, \check{Y}) \right]$$
s.t.
$$\mathbb{E}_{\mathbf{X} \sim \tilde{P}; \check{Y}|\mathbf{X} \sim \check{P}} [\phi(\mathbf{X}, \check{Y})] = \mathbb{E}_{\mathbf{X},Y \sim \tilde{P}} [\phi(\mathbf{X}, Y)]$$

s.t.
$$\mathbb{E}_{\mathbf{X} \sim \tilde{P}; \check{Y} | \mathbf{X} \sim \check{P}}[\phi(\mathbf{X}, \check{Y})] = \mathbb{E}_{\mathbf{X}, Y \sim \tilde{P}}[\phi(\mathbf{X}, Y)]$$

Constraint the **statistics** of the adversary's distribution to match the **empirical** statistics

Robust Adversarial Dual Formulation

Primal:
$$\min_{\hat{P}(\hat{Y}|\mathbf{X})} \max_{\check{P}(\check{Y}|\mathbf{X})} \mathbb{E}_{\mathbf{X} \sim \tilde{P}; \hat{Y}|\mathbf{X} \sim \hat{P}; \check{Y}|\mathbf{X} \sim \check{P}} \left[\operatorname{loss}(\hat{Y}, \check{Y}) \right]$$
 subject to:
$$\mathbb{E}_{\mathbf{X} \sim \tilde{P}; \check{Y}|\mathbf{X} \sim \check{P}} [\phi(\mathbf{X}, \check{Y})] = \mathbb{E}_{\mathbf{X}, Y \sim \tilde{P}} [\phi(\mathbf{X}, Y)]$$
 Lagrange multiplier, minimax duality

ERM with the adversarial surrogate loss (AL):

$$AL(\mathbf{x}, y, \theta) = \max_{\check{P}(\check{Y}|\mathbf{x})} \min_{\hat{P}(\hat{Y}|\mathbf{x})} \mathbb{E}_{\hat{Y}|\mathbf{x} \sim \hat{P}; \check{Y}|\mathbf{x} \sim \check{P}} \left[loss(\hat{Y}, \check{Y}) + \theta^{\intercal} \left(\phi(\mathbf{x}, \check{Y}) - \phi(\mathbf{x}, y) \right) \right]$$
Convex in θ

Simplified notation

$$AL(\mathbf{f}, y) = \max_{\mathbf{q} \in \Delta} \min_{\mathbf{p} \in \Delta} \mathbf{p}^{\mathsf{T}} \mathbf{L} \mathbf{q} + \mathbf{f}^{\mathsf{T}} \mathbf{q} - f_y$$
 where: $p_i = \hat{P}(\hat{Y} = i | \mathbf{x})$

$$q_i = \check{P}(\check{Y} = i | \mathbf{x})$$

$$f_i = \theta^{\mathsf{T}} \phi(\mathbf{x}, i)$$

Adversarial Surrogate Loss

Adversarial Surrogate Loss

$$AL(\mathbf{f}, y) = \max_{\mathbf{q} \in \Delta} \min_{\mathbf{p} \in \Delta} \mathbf{p}^{\mathsf{T}} \mathbf{L} \mathbf{q} + \mathbf{f}^{\mathsf{T}} \mathbf{q} - f_y$$

Convert to a Linear Program

$$AL(\mathbf{f}, y) = \max_{\mathbf{q}, v} v + \mathbf{f}^{\mathsf{T}} \mathbf{q} - f_{y}$$

$$\text{s.t.: } \mathbf{L}_{(i,:)} \mathbf{q} \ge v \quad \forall i \in [k]$$

$$q_{i} \ge 0 \qquad \forall i \in [k]$$

$$\mathbf{q}^{\mathsf{T}} \mathbf{1} = 1$$
LP Solver
$$O(k^{3.5})$$

Convex Polytope formed by the constraints

$$\mathbb{C} = \left\{ \begin{bmatrix} \mathbf{q} \\ v \end{bmatrix} \middle| \mathbf{A} \begin{bmatrix} \mathbf{q} \\ v \end{bmatrix} \ge \mathbf{b}, \text{ where } \mathbf{A} = \begin{bmatrix} \mathbf{L} & -\mathbf{1} \\ \mathbf{I} & \mathbf{0} \\ \mathbf{1}^\mathsf{T} & 0 \\ -\mathbf{1}^\mathsf{T} & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ 1 \\ -1 \end{bmatrix} \right\}$$

Example for a four class classification

Extreme points of the (bounded) polytope

There is always an optimal solution that is an extreme point of the domain.

Computing AL = finding the best extreme point

Zero-One Loss: AL⁰⁻¹ | Convex Polytope

Convex Polytope of the AL⁰⁻¹

$$\mathbb{C} = \left\{ \begin{bmatrix} \mathbf{q} \\ v \end{bmatrix} \middle| \mathbf{A} \begin{bmatrix} \mathbf{q} \\ v \end{bmatrix} \ge \mathbf{b}, \text{ where } \mathbf{A} = \begin{bmatrix} \mathbf{L} & -\mathbf{1} \\ \mathbf{I} & \mathbf{0} \\ \mathbf{1}^{\mathsf{T}} & 0 \\ -\mathbf{1}^{\mathsf{T}} & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ 1 \\ -1 \end{bmatrix} \right\}$$

$$\mathbf{L} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Extreme points of the polytope

$$D = \left\{ \begin{bmatrix} \mathbf{q} \\ v \end{bmatrix} = \frac{1}{|S|} \begin{bmatrix} \sum_{i \in S} \mathbf{e}_i \\ |S| - 1 \end{bmatrix} \middle| \emptyset \neq S \subseteq [k] \right\}$$

 e_i is a vector with a single 1 at the *i*-th index, and 0 elsewhere.

$$[k] \triangleq \{1, \dots, k\} \qquad e_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The Adversarial Surrogate Loss for Zero-One Loss Metrics (AL⁰⁻¹)

$$AL^{0-1}(\mathbf{f}, y) = \max_{S \subseteq [k], S \neq \emptyset} \frac{\sum_{i \in S} f_i + |S| - 1}{|S|} - f_y$$

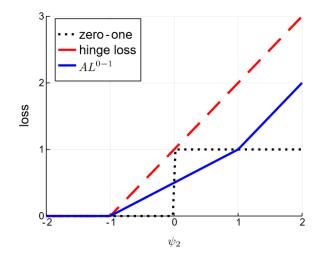
Computation of AL⁰⁻¹

- Sort f_i in non-increasing order
- Incrementally add potentials to the set *S*, until adding more potential decrease the loss value

 $O(k \log k)$, where k is the number of classes

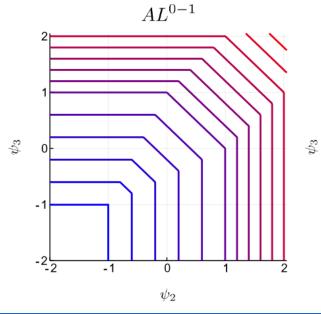
AL⁰⁻¹ Loss Surface

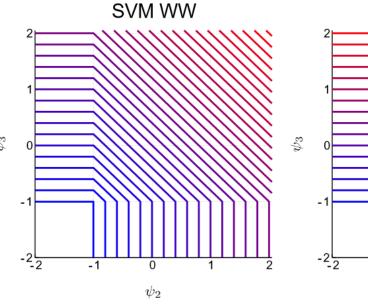
Binary Classification

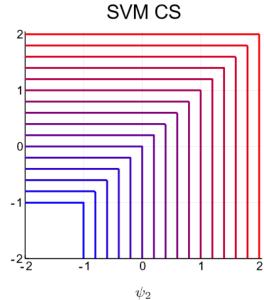


- Plots over the space of potential differences $\psi_i = f_i f_y$
- The true label is y=1

Three Class Classification







Other Multiclass Loss Metrics

Ordinal Regression with Absolute Loss Metric

Extreme points of the polytope:

$$D = \left\{ \begin{bmatrix} \mathbf{q} \\ v \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \mathbf{e}_i + \mathbf{e}_j \\ j - i \end{bmatrix} \middle| i, j \in [k]; i \leq j \right\}$$

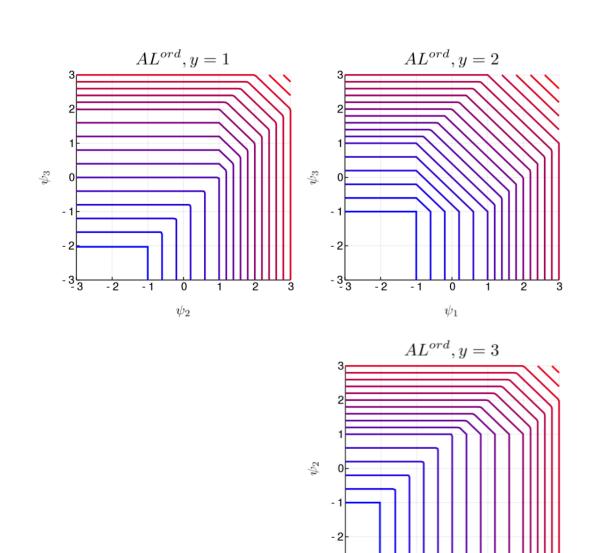
 e_i is a vector with a single 1 at the *i*-th index, and 0 elsewhere.

Adversarial Surrogate Loss ALord:

$$AL^{ord}(\mathbf{f}, y) = \max_{i,j \in [k]} \frac{f_i + f_j + j - i}{2} - f_y$$

Computation cost:

O(k), where k is the number of classes



Other Multiclass Loss Metrics

Classification with Abstention ($0 \le \alpha \le 0.5$)

Extreme points of the polytope:

$$D = \left\{ \begin{bmatrix} \mathbf{q} \\ v \end{bmatrix} = (1 - \alpha) \begin{bmatrix} \mathbf{e}_i \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} \mathbf{e}_j \\ 1 \end{bmatrix} \middle| i, j \in [k] \\ i \neq j \right\} \cup \left\{ \begin{bmatrix} \mathbf{q} \\ v \end{bmatrix} = \begin{bmatrix} \mathbf{e}_i \\ 0 \end{bmatrix} \middle| i \in [k] \right\}$$

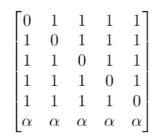
 e_i is a vector with a single 1 at the *i*-th index, and 0 elsewhere.

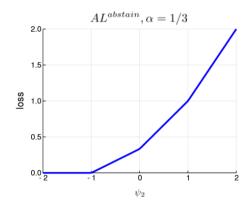
Adversarial Surrogate Loss ALabstain:

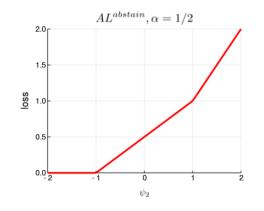
$$AL^{abstain}(\mathbf{f}, y, \alpha) = \max \left\{ \max_{i, j \in [k], i \neq j} (1 - \alpha) f_i + \alpha f_j + \alpha, \max_i f_i \right\} - f_y$$

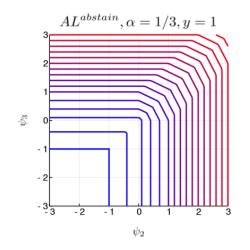
Computation cost:

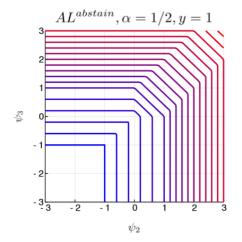
O(k), where k is the number of classes











Fisher Consistency

Fisher Consistency Requirement in Multiclass Classification

$$f^* \in \mathcal{F}^* \triangleq \underset{f}{\operatorname{argmin}} \mathbb{E}_{Y|\mathbf{x} \sim P} \left[\operatorname{AL}_f(\mathbf{x}, Y) \right] \qquad -P(Y|x) \text{ is the true conditional distribution} \\ -f \text{ is optimized over all measurable functions} \\ \Rightarrow \underset{y}{\operatorname{argmax}} f^*(\mathbf{x}, y) \subseteq \mathcal{Y}^{\diamond} \triangleq \underset{y'}{\operatorname{argmin}} \mathbb{E}_{Y|\mathbf{x} \sim P} [\operatorname{loss}(y', Y)] \\ \xrightarrow{y'} \qquad \longrightarrow \qquad \text{Bayes risk minimizer}$$

Minimizer Property

Under f^* : $f^* + L_{(y^{\diamond},:)}^{\mathsf{T}}$ is a uniform vector

Consistency

$$\mathbf{f}^* + \mathbf{L}_{(y^{\diamond},:)}^{\mathsf{T}}$$
 is a uniform vector \longrightarrow argmax_y $f^*(\mathbf{x},y) = \operatorname{argmin}_y \mathbf{L}_{(y^{\diamond},y)} \longrightarrow$ Fisher consistent

Optimization

Sub-gradient descent

$$Q^* = \operatorname*{argmax}_{\mathbf{q} \in \Delta} \min_{\mathbf{p} \in \Delta} \left\{ \mathbf{p}^\intercal \mathbf{L} \mathbf{q} + \theta^\intercal \left[\sum_j q_j \phi(\mathbf{x}, j) - \phi(\mathbf{x}, y) \right] \right\}$$

$$\partial_{\theta} AL(\mathbf{x}, y, \theta) = \mathbf{conv} \left\{ \sum_{j} q_{j}^{*} \phi(\mathbf{x}, j) - \phi(\mathbf{x}, y) \mid \mathbf{q} \in Q^{*} \right\}$$

Example: AL⁰⁻¹

$$\partial_{\theta} AL^{0-1}(\mathbf{x}, y, \theta) \ni \frac{1}{|S^*|} \sum_{j \in S^*} \phi(\mathbf{x}, j) - \phi(\mathbf{x}, y)$$

 S^* is the set that maximize AL^{0-1}

Incorporate Rich Feature Spaces via the Kernel Trick

input space
$$x_i$$
 rich feature space $\omega(x_i)$

Compute the dot products

$$K(\mathbf{x}_i, \mathbf{x}_j) = \omega(\mathbf{x}_i) \cdot \omega(\mathbf{x}_j)$$

- 1. Dual Optimization (benefit: dual parameter sparsity)
- 2. Primal Optimization (via PEGASOS (Shalev-Shwartz, 2010))

Experiments:

Example: Multiclass Classification (0-1 loss)

Multiclass Classification | Related Works

Multiclass Support Vector Machine (SVM)

1. The WW Model (Weston et.al., 2002)

$$loss_{WW}(\mathbf{x}_i, y_i) = \sum_{j \neq y_i} [1 - (f_{y_i}(\mathbf{x}_i) - f_j(\mathbf{x}_i))]_+$$

Relative Margin Model

2. The CS Model (Crammer and Singer, 1999)

$$loss_{CS}(\mathbf{x}_i, y_i) = \max_{j \neq y_i} \left[1 - \left(f_{y_i}(\mathbf{x}_i) - f_j(\mathbf{x}_i) \right) \right]_+$$

Relative Margin Model

3. The LLW Model (Lee et.al., 2004)

$$loss_{LLW}(\mathbf{x}_i, y_i) = \sum_{j \neq y_i} [1 + f_j(\mathbf{x}_i)]_+$$

with: $\sum_{j} f_j(\mathbf{x}_i) = 0$

Absolute Margin Model

Fisher Consistent?

(Tewari and Bartlett, 2007) (Liu, 2007)

Perform well in low dimensional feature? (Dogan et.al., 2016)

AL⁰⁻¹ | Experiments

Dataset properties and AL⁰⁻¹ constraints

	Dataset _	Properties				SVM	AL ⁰⁻¹ constraints added and active			
		#class	#train	# test	#feat.	constraints	Linear kernel		Gauss. kernel	
$\overline{(1)}$	iris	3	105	45	4	210	213	13	223	38
(2)	glass	6	149	65	9	745	578	125	490	252
(3)	redwine	10	1119	480	11	10071	5995	1681	3811	1783
(4)	ecoli	8	235	101	7	1645	614	117	821	130
(5)	vehicle	4	592	254	18	1776	1310	311	1201	248
(6)	segment	7	1617	693	19	9702	4410	244	4312	469
(7)	sat	7	4435	2000	36	26610	11721	1524	11860	6269
(8)	optdigits	10	3823	1797	64	34407	7932	597	10072	2315
(9)	pageblocks	5	3831	1642	10	15324	9459	427	9155	551
(10)) libras	15	252	108	90	3528	1592	389	1165	353
(11)) vertebral	3	217	93	6	434	344	78	342	86
(12)) breasttissue	6	74	32	9	370	258	65	271	145

12 datasets

dual parameter sparsity

AL⁰⁻¹ | Experiments | Results

Results for Linear Kernel and Gaussian Kernel

The mean (standard deviation) of the accuracy. Bold numbers: best or not significantly worse than the best

D		Linear	Kernel		Gaussian Kernel				
	$\mathrm{AL}^{0\text{-}1}$	WW	CS	LLW	AL^{0-1}	WW	CS	LLW	
(1)	96.3 (3.1)	96.0 (2.6)	96.3 (2.4)	79.7 (5.5)	96.7 (2.4)	96.4 (2.4)	96.2 (2.3)	95.4 (2.1)	
(2)	62.5 (6.0)	62.2 (3.6)	62.5 (3.9)	52.8 (4.6)	69.5 (4.2)	66.8(4.3)	69.4 (4.8)	69.2 (4.4)	
(3)	58.8 (2.0)	59.1 (1.9)	56.6(2.0)	57.7(1.7)	63.3(1.8)	64.2(2.0)	64.2(1.9)	64.7 (2.1)	
(4)	86.2 (2.2)	85.7(2.5)	85.8 (2.3)	74.1 (3.3)	86.0 (2.7)	84.9 (2.4)	85.6 (2.4)	86.0 (2.5)	
(5)	78.8 (2.2)	78.8 (1.7)	78.4 (2.3)	69.8 (3.7)	84.3 (2.5)	84.4 (2.6)	83.8 (2.3)	84.4 (2.6)	
(6)	94.9 (0.7)	94.9 (0.8)	95.2 (0.8)	75.8 (1.5)	96.5 (0.6)	96.6 (0.5)	96.3 (0.6)	96.4 (0.5)	
(7)	84.9 (0.7)	85.4 (0.7)	84.7 (0.7)	74.9 (0.9)	91.9 (0.5)	92.0 (0.6)	91.9 (0.5)	91.9 (0.4)	
(8)	96.6 (0.6)	96.5(0.7)	96.3 (0.6)	76.2(2.2)	98.7 (0.4)	98.8 (0.4)	98.8 (0.3)	98.9 (0.3)	
(9)	96.0 (0.5)	96.1 (0.5)	96.3 (0.5)	92.5(0.8)	96.8 (0.5)	96.6 (0.4)	96.7 (0.4)	96.6 (0.4)	
(10)	74.1 (3.3)	72.0 (3.8)	71.3 (4.3)	34.0 (6.4)	83.6 (3.8)	83.8 (3.4)	85.0 (3.9)	83.2 (4.2)	
(11)	85.5 (2.9)	85.9 (2.7)	85.4 (3.3)	79.8 (5.6)	86.0 (3.1)	85.3 (2.9)	85.5 (3.3)	84.4 (2.7)	
(12)	64.4 (7.1)	59.7 (7.8)	66.3 (6.9)	58.3 (8.1)	68.4 (8.6)	68.1 (6.5)	66.6 (8.9)	68.0 (7.2)	
avg	81.59	81.02	81.25	68.80	85.14	84.82	85.00	84.93	
#b	9	6	8	0	9	6	6	7	

Linear Kernel

AL⁰¹: slight benefit LLW: poor perf.

Gauss. Kernel

LLW: improved perf. AL⁰¹: maintain

benefit

Multiclass Zero-One Classification

Relative Margin Model

Fisher Consistent? low dimensional feature? 1. The SVM WW Model (Weston et.al., 2002) Relative Margin Model 2. The SVM CS Model (Crammer and Singer, 1999) Relative Margin Model 3. The SVM LLW Model (Lee et.al., 2004) **Absolute Margin Model** 4. The AL⁰⁻¹ (Adversarial Surrogate Loss)

Perform well in

Other results

General Multiclass Classification

General Multiclass Classification

- 1. Zero-One Loss Metric
- 2. Ordinal Classification with the Absolute Loss Metric
- 3. Ordinal Classification with the Squared Loss Metric
- 4. Weighted Multiclass Loss Metrics
- Classification with Abstention / Reject Option

Performance-Aligned Graphical Models

Based on:

Conditional Graphical Models

Some Popular Graphical Structure in Structured Prediction

Chain Structure

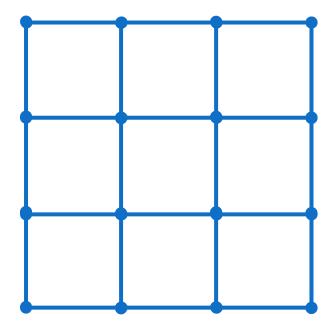
Activity Prediction, Sequence Tagging, NLP tasks: e.g. Named Entity Recognition

Tree Structure



Parse Tree-Based NLP tasks: Semantic Role Labeling and Sentiment Analysis

Lattice Structure



Computer Vision Tasks: e.g. Image Segmentation

Previous Approaches for Conditional Graphical Models

Conditional Random Fields (CRF)

(Lafferty et. al., 2001)

Fisher Consistent
Produce Bayes optimal prediction in ideal case.

No Fisher consistency guarantee
Based on Multiclass SVM-CS.
Not consistent for distribution with no majority label.

No easy mechanism to incorporate customized loss/performance metrics
The algorithm optimized the conditional likelihood.
Loss/performance metric-based prediction can be performed after learning process.

Align with the loss/performance metrics
The algorithm accept customized loss/performance
metric in its optimization objective.

Adversarial Graphical Models (AGM)

Primal:

$$\min_{\hat{P}(\hat{\mathbf{y}}|\mathbf{x})} \max_{\check{P}(\hat{\mathbf{y}}|\mathbf{x})} \mathbb{E}_{\mathbf{X} \sim \tilde{P}; \hat{\mathbf{Y}}|\mathbf{X} \sim \hat{P}; \check{\mathbf{Y}}|\mathbf{X} \sim \check{P}} \left[loss(\hat{\mathbf{Y}}, \check{\mathbf{Y}}) \right] \text{ s.t.: } \mathbb{E}_{\mathbf{X} \sim \tilde{P}; \check{\mathbf{Y}}|\mathbf{X} \sim \check{P}} \left[\Phi(\mathbf{X}, \check{\mathbf{Y}}) \right] = \tilde{\Phi}$$

- Feature function $\Phi(\mathbf{X},\mathbf{Y})$ is additively decomposed over cliques, $\Phi(\mathbf{x},\mathbf{y}) = \sum_c \phi(\mathbf{x},\mathbf{y}_c)$
- The loss metric is additively decomposed over each y_i variables, $loss(\widehat{y}, \widecheck{y}) = \sum_{i=1}^{n} loss(\widehat{y}_i, \widecheck{y}_i)$
- Focus on pairwise graphical models: interactions between label = edges in graphs

Dual:

$$\min_{\theta_{e},\theta_{v}} \mathbb{E}_{\mathbf{X},\mathbf{Y}\sim\tilde{P}} \max_{\check{P}(\check{\mathbf{y}}|\mathbf{x})} \min_{\hat{P}(\hat{\mathbf{y}}|\mathbf{x})} \sum_{\hat{\mathbf{y}},\check{\mathbf{y}}} \hat{P}(\hat{\mathbf{y}}|\mathbf{x}) \check{P}(\check{\mathbf{y}}|\mathbf{x}) \Big[\sum_{i}^{n} loss(\hat{y}_{i},\check{y}_{i}) \\
+ \theta_{e} \cdot \sum_{(i,j)\in E} \left[\phi(\mathbf{x},\check{y}_{i},\check{y}_{j}) - \phi(\mathbf{x},y_{i},y_{j}) \right] + \theta_{v} \cdot \sum_{i}^{n} \left[\phi(\mathbf{x},\check{y}_{i}) - \phi(\mathbf{x},y_{i}) \right] \Big]$$

 θ_e : Lagrange multipliers for constraints with edge features

 θ_v : Lagrange multipliers for constraints with node features

size: $k^n \times k^n$

<u>Intractable</u>

for modestly-sized *n*

AGM | Marginal Formulation

Dual:

$$\min_{\theta_{e},\theta_{v}} \mathbb{E}_{\mathbf{X},\mathbf{Y}\sim\tilde{P}} \max_{\check{P}(\check{\mathbf{y}}|\mathbf{x})} \min_{\hat{P}(\hat{\mathbf{y}}|\mathbf{x})} \sum_{\hat{\mathbf{y}},\check{\mathbf{y}}} \hat{P}(\hat{\mathbf{y}}|\mathbf{x}) \check{P}(\check{\mathbf{y}}|\mathbf{x}) \left[\sum_{i}^{n} \operatorname{loss}(\hat{y}_{i},\check{y}_{i}) + \theta_{e} \cdot \sum_{(i,j)\in E} \left[\phi(\mathbf{x},\check{y}_{i},\check{y}_{j}) - \phi(\mathbf{x},y_{i},y_{j}) \right] + \theta_{v} \cdot \sum_{i}^{n} \left[\phi(\mathbf{x},\check{y}_{i}) - \phi(\mathbf{x},y_{i}) \right] \right]$$

Dual | Marginal Formulation:

$$\min_{\theta_{e},\theta_{v}} \mathbb{E}_{\mathbf{X},\mathbf{Y} \sim \tilde{P}} \max_{\check{P}(\check{\mathbf{y}}|\mathbf{x})} \min_{\hat{P}(\hat{\mathbf{y}}|\mathbf{x})} \left[\sum_{i}^{n} \sum_{\hat{y}_{i},\check{y}_{i}} \hat{P}(\check{y}_{i}|\mathbf{x}) \check{P}(\check{y}_{i}|\mathbf{x}) loss(\hat{y}_{i},\check{y}_{i}) \right] \\
+ \sum_{(i,j)\in E} \sum_{\check{y}_{i},\check{y}_{j}} \check{P}(\check{y}_{i},\check{y}_{j}|\mathbf{x}) \left[\theta_{e} \cdot \phi(\mathbf{x},\check{y}_{i},\check{y}_{j}) \right] - \sum_{(i,j)\in E} \theta_{e} \cdot \phi(\mathbf{x},y_{i},y_{j}) \\
+ \sum_{i}^{n} \sum_{\check{y}_{i}} \check{P}(\check{y}_{i}|\mathbf{x}) \left[\theta_{v} \cdot \phi(\mathbf{x},\check{y}_{i}) \right] - \sum_{i}^{n} \theta_{v} \cdot \phi(\mathbf{x},y_{i}) \right],$$

Similar to CRF and SSVM:

General Graphical Models: Intractable

Focus:

Graphs with low tree-width, e.g.: chain, tree, simple loops.

Tractable optimization

The objective depends on $\hat{P}(\hat{\mathbf{y}}|\mathbf{x})$ only through its node marginal probability $\hat{P}(\hat{y}_i|\mathbf{x})$ The objective depends on $\check{P}(\check{\mathbf{y}}|\mathbf{x})$ only through its node and edge marginal probability $\check{P}(\check{y}_i|\mathbf{x})$ and $\check{P}(\check{y}_i,\check{y}_i|\mathbf{x})$

AGM | Optimization

Matrix Notation (Tree Structure AGM):

$$\min_{\theta_{e},\theta_{v}} \mathbb{E}_{\mathbf{X},\mathbf{Y}\sim\tilde{P}} \max_{\mathbf{Q}} \min_{\mathbf{p}} \sum_{i}^{n} \left[\mathbf{p}_{i} \mathbf{L}_{i} (\mathbf{Q}_{pt(i);i}^{T} \mathbf{1}) + \left\langle \mathbf{Q}_{pt(i);i} - \mathbf{Z}_{pt(i);i}, \sum_{l} \theta_{e}^{(l)} \mathbf{W}_{pt(i);i;l} \right\rangle + (\mathbf{Q}_{pt(i);i}^{T} \mathbf{1} - \mathbf{z}_{i})^{T} (\sum_{l} \theta_{v}^{(l)} \mathbf{w}_{i;l}) \right]
+ (\mathbf{Q}_{pt(i);i}^{T} \mathbf{1} - \mathbf{z}_{i})^{T} (\sum_{l} \theta_{v}^{(l)} \mathbf{w}_{i;l}) \right]
\text{subject to: } \mathbf{Q}_{pt(pt(i));pt(i)}^{T} \mathbf{1} = \mathbf{Q}_{pt(i);i} \mathbf{1}, \ \forall i \in \{1, \dots, n\},$$

Optimization Techniques:

- Stochastic (sub)-gradient descent (outer optimization for θ_e and θ_v)
- Dual decomposition (inner **Q** optimization)
- Discrete optimal transport solver (recovering **Q**)
- Closed-form solution (inner **p** optimization)

Runtime (for a single subgradient update):

- Depends on the loss metric used
- For the additive zero-one loss (Hamming loss)

$$O(nlk\log k + nk^2)$$

k: # classes, n: # nodes,

l: # iterations in dual decomposition

CRF SSVM
$$O(nk^2)$$
 $O(nk^2)$

General graphs low tree-width

$$O(nlwk^{(w+1)}\log k + nk^{2(w+1)})$$

n: # cliques, w: treewidth of the graph

AGM | Consistency

If the loss function is additive

AGM is consistent

when f is optimized over all measurable functions on the input space

AGM is also consistent

when f is optimized over a restricted set of functions:

all measurable function that are additive over the edge and node potentials.

AGM | Experiments (1)

Facial Emotion Intensity Prediction (Chain Structure, Labels with Ordinal Category)

- Each node: 3 class classification: neutral = 1< increasing = 2 < apex = 3
- 167 sequences
- Ordinal loss metrics: zero-one loss, absolute loss, and squared loss
- Weighted and unweighted. Weights reflect the focus of prediction (e.g. focus more on latest nodes)

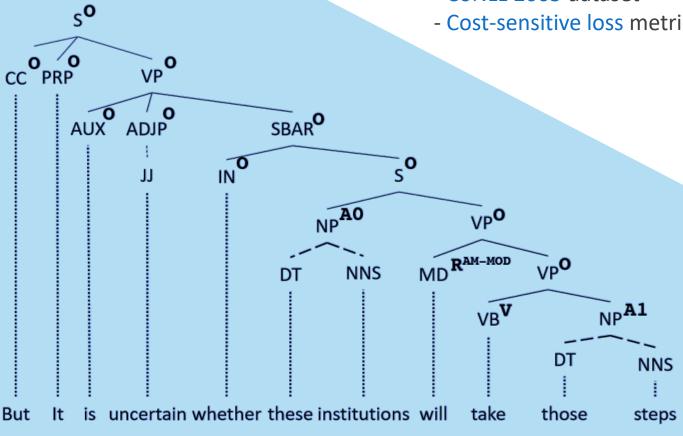
Results: The mean (standard deviation) of the average loss metrics. Bold numbers: best or not significantly worse than the best

Loss metrics	AGM	CRF	SSVM
zero-one, unweighted	0.34	0.32	0.37
absolute, unweighted	0.33	0.34	0.40
quadratic, unweighted	0.38	0.38	0.40
zero-one, weighted	0.28	0.32	0.29
absolute, weighted	0.29	0.36	0.29
quadratic, weighted	0.36	0.40	0.33
average	0.33	0.35	0.35
# bold	4	2	2

AGM | Experiments (2)

Semantic Role Labeling (Tree Structure)

- Predict label of each node given known parse tree.
- CoNLL 2005 dataset
- Cost-sensitive loss metric is used reflect the importance of each label



Results:

Table 2: The average loss metrics for the semantic role labeling task.

Loss metrics	AGM	CRF	SSVM
cost-sensitive loss	0.14	0.19	0.14

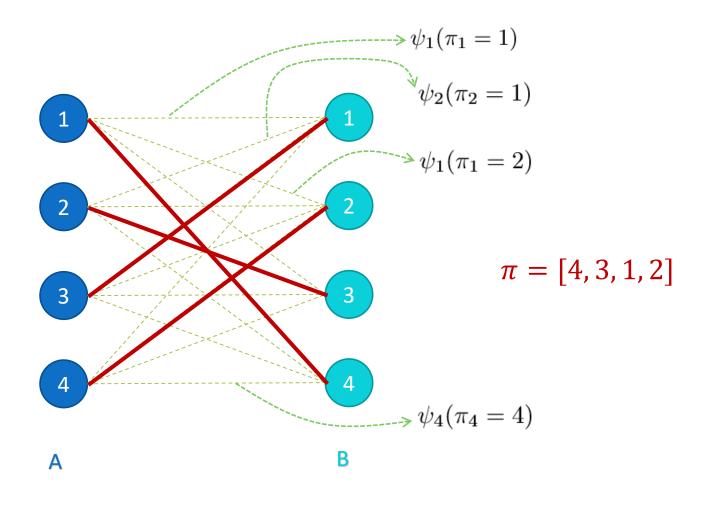
Conditional Graphical Models

Performance-Aligned? Consistent? Conditional Random Field (CRF) (Lafferty et. al., 2001) Structured SVM (Tsochantaridis et. al., 2005) **Adversarial Graphical Models** (our approach)

Bipartite Matching in Graphs

Based on:

Bipartite Matching Task



Maximum weighted bipartite matching:

$$\max_{\pi \in \Pi} \psi(\pi) = \max_{\pi \in \Pi} \sum_{i} \psi_i(\pi_i)$$

Machine learning task:

Learn the appropriate weights $\psi_i(\cdot)$

Objective:

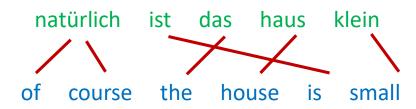
Minimize a loss metric, e.g., the Hamming loss

$$loss_{Ham}(\pi, \pi') = \sum_{i=1}^{n} 1(\pi'_i \neq \pi_i)$$

Learning Bipartite Matching | Applications

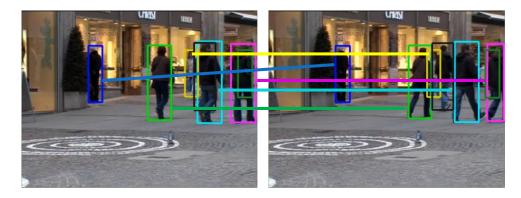
1 Word alignment

(Taskar et. al., 2005; Pado & Lapta, 2006; Mac-Cartney et. al., 2008)



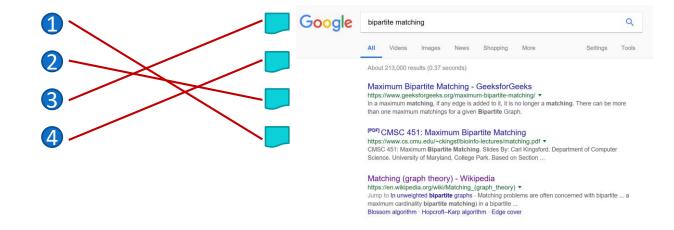
2 Correspondence between images

(Belongie et. al., 2002; Dellaert et. al., 2003)



3 Learning to rank documents

(Dwork et. al., 2001; Le & Smola, 2007)



A non-bipartite matching task can be converted to a bipartite matching problem

Previous Approaches for Bipartite Matching

CRF (Petterson et. al., 2009; Volkovs & Zemel, 2012)

$$P_{\psi}(\pi) = \frac{1}{Z_{\psi}} \exp\left(\sum_{i=1}^{n} \psi_{i}(\pi_{i})\right)$$

$$Z_{\psi} = \sum_{\pi} \prod_{i=1}^{n} \exp\left(\psi_{i}(\pi_{i})\right) = \operatorname{perm}(\mathbf{M})$$

$$\operatorname{where} M_{i,j} = \exp\left(\psi_{i}(j)\right)$$

Structured SVM (Tsochantaridis et. al., 2005)

solved using constraint generation

$$\min_{\psi} \mathbb{E}_{\pi \sim \tilde{P}} \left[\max_{\pi'} \left\{ loss(\pi, \pi') + \psi(\pi') \right\} - \psi(\pi) \right]$$

 \tilde{P} is the empirical distribution

Fisher Consistent

Produce Bayes optimal prediction in ideal case

Computationally Efficient

Hungarian algorithm for computing the maximum violated constraints

Computationally intractable

Normalization term requires matrix permanent computation (a #P-hard problem).

Approximation is needed for modestly sized problems.

No Fisher consistency guarantee

Based on Multiclass SVM-CS

Not consistent for distribution with no majority label

Adversarial Bipartite Matching (our approach)

Primal:

$$\min_{\hat{P}(\hat{\pi}|x)} \max_{\check{P}(\check{\pi}|x)} \mathbb{E}_{x \sim \tilde{P}; \check{\pi}|x \sim \hat{P}} \left[loss(\hat{\pi}, \check{\pi}) \right]$$
s.t.
$$\mathbb{E}_{x \sim \tilde{P}; \check{\pi}|x \sim \check{P}} \left[\sum_{i=1}^{n} \phi_{i}(x, \check{\pi}_{i}) \right] = \mathbb{E}_{(x,\pi) \sim \tilde{P}} \left[\sum_{i=1}^{n} \phi_{i}(x, \pi_{i}) \right]$$

Dual:

$$\min_{\theta} \mathbb{E}_{x,\pi \sim \tilde{P}} \min_{\hat{P}(\hat{\pi}|x)} \max_{\check{P}(\check{\pi}|x)} \mathbb{E}_{\substack{\hat{\pi}|x \sim \hat{P}\\ \check{\pi}|x \sim \check{P}}} \left[\operatorname{loss}(\hat{\pi},\check{\pi}) + \theta \cdot \sum_{i=1}^{n} \left(\phi_{i}(x,\check{\pi}_{i}) - \phi_{i}(x,\pi_{i}) \right) \right]$$
Hamming loss
$$\text{Lagrangian term } \delta$$

Augmented Hamming loss matrix for n = 3 permutations

	$\check{\pi} = 123$	$\check{\pi} = 132$	$\check{\pi}=213$	$\check{\pi}=231$	$\check{\pi} = 312$	$\check{\pi} = 321$
$\hat{\pi}\!=\!123$	$0 + \delta_{123}$	$2 + \delta_{132}$	$2+\delta_{213}$	$3 + \delta_{231}$	$3 + \delta_{312}$	$2 + \delta_{321}$
$\hat{\pi}\!=\!132$	$2 + \delta_{123}$	$0 + \delta_{132}$	$3 + \delta_{213}$	$2+\delta_{231}$	$2 + \delta_{312}$	$3 + \delta_{321}$
$\hat{\pi}\!=\!213$	$2 + \delta_{123}$	$3 + \delta_{132}$	$0+\delta_{213}$	$2 + \delta_{231}$	$2 + \delta_{312}$	$3 + \delta_{321}$
$\hat{\pi}\!=\!231$	$3 + \delta_{123}$	$2+\delta_{132}$	$2+\delta_{213}$	$0+\delta_{231}$	$3 + \delta_{312}$	$2 + \delta_{321}$
$\hat{\pi}\!=\!312$	$3 + \delta_{123}$	$2 + \delta_{132}$	$2 + \delta_{213}$	$3 + \delta_{231}$	$0 + \delta_{312}$	$2 + \delta_{321}$
$\hat{\pi}\!=\!321$	$2 + \delta_{123}$	$3 + \delta_{132}$	$3 + \delta_{213}$	$2+\delta_{231}$	$2 + \delta_{312}$	$0+\delta_{321}$

size:

 $n! \times n!$

<u>Intractable</u>

for modestly-sized n

Polytope of the Permutation Mixtures

Dual:

$$\min_{\theta} \mathbb{E}_{(x,\pi)\sim \tilde{P}} \min_{\substack{\hat{P}(\hat{\pi}|x)\\ \hat{P}(\hat{\pi}|x)}} \max_{\stackrel{\tilde{P}(\hat{\pi}|x)}{\tilde{P}(\hat{\pi}|x)}} \mathbb{E}_{\hat{\pi}|x\sim \hat{P};\check{\pi}|x\sim \check{P}} \left[\sum_{i=1}^{n} I(\pi'_{i} \neq \pi_{i}) + \theta \cdot \sum_{i=1}^{n} (\phi_{i}(x,\check{\pi}_{i}) - \phi_{i}(x,\pi_{i})) \right]$$

Marginal Distribution Matrices:

Predictor

$$\mathbf{P} = \begin{bmatrix} & 1 & 2 & 3 \\ \hat{\pi}_1 & p_{1,1} & p_{1,2} & p_{1,3} \\ \hat{\pi}_2 & p_{2,1} & p_{2,2} & p_{2,3} \\ \hat{\pi}_3 & p_{3,1} & p_{3,2} & p_{3,3} \end{bmatrix}$$

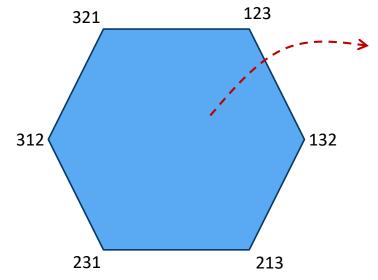
$$p_{i,j} = \hat{P}(\hat{\pi}_i = j)$$

Adversary

$$\mathbf{Q} = \begin{bmatrix} & 1 & 2 & 3 \\ \check{\pi}_1 & q_{1,1} & q_{1,2} & q_{1,3} \\ \check{\pi}_2 & q_{2,1} & q_{2,2} & q_{2,3} \\ \check{\pi}_3 & q_{3,1} & q_{3,2} & q_{3,3} \end{bmatrix}$$

$$q_{i,j}=\check{P}\left(\check{\pi_{i}}=j\right)$$

Birkhoff – Von Neumann theorem:



convex polytope whose points are doubly stochastic matrices

$$\mathbf{P1} = \mathbf{P}^{\top} \mathbf{1} = \mathbf{Q1} = \mathbf{Q}^{\top} \mathbf{1} = \mathbf{1}$$

reduce the space of optimization: from O(n!) to $O(n^2)$

Marginal Distribution Formulation

Dual:

$$\min_{\theta} \mathbb{E}_{(x,\pi)\sim \tilde{P}} \min_{\hat{P}(\hat{\pi}|x)} \max_{\check{P}(\check{\pi}|x)} \mathbb{E}_{\hat{\pi}|x\sim \hat{P};\check{\pi}|x\sim \check{P}} \left[\sum_{i=1}^{n} I(\pi'_{i} \neq \pi_{i}) + \theta \cdot \sum_{i=1}^{n} (\phi_{i}(x,\check{\pi}_{i}) - \phi_{i}(x,\pi_{i})) \right]$$

Marginal Formulation:

Rearrange the optimization order and add regularization and smoothing penalties

$$\max_{\mathbf{Q} \geq \mathbf{0}} \min_{\theta} \frac{1}{m} \sum_{i=1}^{m} \min_{\mathbf{P}_{i} \geq \mathbf{0}} \left[\langle \mathbf{Q}_{i} - \mathbf{Y}_{i}, \sum_{k} \theta_{k} \mathbf{X}_{i,k} \rangle - \langle \mathbf{P}_{i}, \mathbf{Q}_{i} \rangle + \frac{\mu}{2} \|\mathbf{P}_{i}\|_{F}^{2} - \frac{\mu}{2} \|\mathbf{Q}_{i}\|_{F}^{2} \right] + \frac{\lambda}{2} \|\theta\|_{2}^{2}$$
s.t. : $\mathbf{P}_{i} \mathbf{1} = \mathbf{P}_{i}^{\top} \mathbf{1} = \mathbf{Q}_{i} \mathbf{1} = \mathbf{Q}_{i}^{\top} \mathbf{1} = \mathbf{1}, \quad \forall i$

Optimization Techniques Used:

- Outer (Q) : projected Quasi-Newton (Schmidt, et.al., 2009)
- Inner (θ) : closed-form solution
- Inner (P) : projection to doubly-stochastic matrix
- Projection to doubly-stochastic matrix: ADMM

Consistency

Empirical Risk Perspective of Adversarial Bipartite Matching

$$\min_{\theta} \mathbb{E}_{\substack{x \sim P \\ \pi \mid x \sim \tilde{P}}} \left[A L_{f_{\theta}}^{\text{perm}}(x, \pi) \right]$$

where:
$$AL_{f_{\theta}}^{\text{perm}}(x,\pi) \triangleq \min_{\hat{P}(\hat{\pi}|x)} \max_{\check{P}(\check{\pi}|x)} \mathbb{E}_{\substack{\hat{\pi}|x \sim \hat{P} \\ \check{\pi}|x \sim \check{P}}} \left[loss(\hat{\pi},\check{\pi}) + f_{\theta}(x,\check{\pi}) - f_{\theta}(x,\pi) \right]$$

ALperm is consistent

when f is optimized over all measurable functions on the input space (x, π)

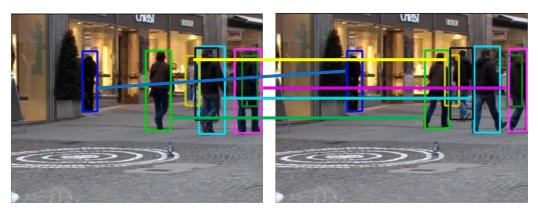
ALperm is also consistent

f is optimized over a restricted set of functions: $f(x,\pi) = \sum_i g_i(x,\pi_i)$

when g is allowed to be optimized over all measurable functions on the individual input space (x, π_i)

Experiments

Application: Video Tracking



Empirical runtime (until convergence)

Table 5. Running time (in seconds) of the model for various number of elements n with fixed number of samples (m=50)

DATASET	# ELEMENTS	ADV MARG.	SSVM
CAMPUS	12 1.0	1.96 1.0	0.22
STADTMITTE	16 1.3	2.46 1.2	0.25
SUNNYDAY	18 1.5	2.75 1.4	0.15
PEDCROSS2	30 2.5	8.18 4.2	0.26
BAHNHOF	34 2.8	9.79 5.0	0.31

relative: 12=1.0 relative: 1.96=1.0

Public Benchmark Datasets

Table 3. Dataset properties

DATASET	# ELEMENTS	# EXAMPLES
TUD-CAMPUS	12	70
TUD-STADTMITTE	16	178
ETH-SUNNYDAY	18	353
ETH-BAHNHOF	34	999
ETH-PEDCROSS2	30	836

Adversarial. Marginal Formulation: grows (roughly) quadratically in n

CRF: impractical even for n=20 (Petterson et. al., 2009)

Experiment Results

Table 1: The mean and standard deviation (in parenthesis) of the average accuracy (1 - the average Hamming loss) for the adversarial bipartite matching model compared with Structured-SVM.

Training/ Testing	ADV. BIPARTITE MATCHING	STRUCTURED SVM
Campus/ Stadtmitte	0.662 (0.08)	0.662 (0.08)
STADTMITTE/ CAMPUS	0.667 (0.11)	0.660 (0.12)
Bahnhof/ Sunnyday	0.754 (0.10)	0.729 (0.15)
Pedcross2/ Sunnyday	0.750 (0.10)	0.736 (0.13)
Sunnyday/ Bahnhof	0.751 (0.18)	0.739 (0.20)
Pedcross2/ Bahnhof	0.763 (0.16)	0.731 (0.21)
Bahnhof/ Pedcross2	0.714 (0.16)	0.701 (0.18)
Sunnyday/ Pedcross2	0.712 (0.17)	$0.700 \\ (0.18)$

6 pairs of dataset significantly outperforms SSVM

2 pairs of dataset competitive with SSVM

Bipartite Matching in Graphs

Perform well? Efficient? **Consistent?** Conditional Random Field (CRF) (Petterson et. al., 2009; Volkovs & Zemel, 2012) Structured SVM (Tsochantaridis et. al., 2005) **Adversarial Bipartite Matching** (our approach)

Conclusion

Robust Adversarial Learning Algorithms

- Align better with the loss/performance metric (by incorporating the metric into its learning objective)
- Provide Fisher consistency guarantee
- Computationally efficient
- Perform well in practice

Future Directions

Future Directions (1)

1. Fairness in Machine Learning

Important issues in automated decision using ML algorithms.

Requires the algorithm to produce fair prediction.

Our formulation only enforces constraints on the adversary.

$$\min_{\hat{P}(\hat{Y}|\mathbf{X})} \max_{\check{P}(\check{Y}|\mathbf{X})} \mathbb{E}_{\mathbf{X},Y \sim \tilde{P};\hat{Y}|\mathbf{X} \sim \hat{P};\check{Y}|\mathbf{X} \sim \check{P}} \left[loss(\hat{Y},\check{Y}) \right]$$
s.t.
$$\mathbb{E}_{\mathbf{X} \sim \tilde{P};\check{Y}|\mathbf{X} \sim \check{P}} [\phi(\mathbf{X},\check{Y})] = \mathbb{E}_{\mathbf{X},Y \sim \tilde{P}} [\phi(\mathbf{X},Y)]$$

Add fairness constraints to the predictor?

2. Statistical Theory of Loss Functions

In multiclass classification problem, both AL⁰⁻¹ and SVM-LLW are Fisher consistent. However, their performances are quite different.

Is there any stronger statistical guarantee that can separate the high-performing Fisher consistent algorithm from the low-performing ones?

Future Directions (2)

3. Structured Prediction & Graphical Models

More complex graphical structures are popular in some applications, e.g. computer vision.

Exact learning algorithms for AGM in this case may be intractable.

Can we develop learning algorithms for general graphical models?

What kind of approximation algorithms can be applicable?

4. Deep Learning

Deep learning has been successfully applied to many prediction problems.

Most of deep learning architectures are not designed to optimize customized loss metrics.

How can the robust adversarial learning approach help designing deep learning architectures?

Collaborators

Publications

- Consistent Robust Adversarial Prediction for General Multiclass Classification
 Rizal Fathony, Kaiser Asif, Anqi Liu, Mohammad Bashiri, Wei Xing, Sima Behpour, Xinhua Zhang, Brian D. Ziebart.
 Submitted to JMLR.
- Distributionally Robust Graphical Models
 Rizal Fathony, Ashkan Rezaei, Mohammad Bashiri, Xinhua Zhang, Brian D. Ziebart.
 Advances in Neural Information Processing Systems 31 (NeurIPS), 2018.
- Efficient and Consistent Adversarial Bipartite Matching
 Rizal Fathony*, Sima Behpour*, Xinhua Zhang, Brian D. Ziebart.
 International Conference on Machine Learning (ICML), 2018.
- Adversarial Surrogate Losses for Ordinal Regression
 Rizal Fathony, Mohammad Bashiri, Brian D. Ziebart.
 Advances in Neural Information Processing Systems 30 (NIPS), 2017.
- Adversarial Multiclass Classification: A Risk Minimization Perspective Rizal Fathony, Anqi Liu, Kaiser Asif, Brian D. Ziebart.
 Advances in Neural Information Processing Systems 29 (NIPS), 2016.
- Kernel Robust Bias-Aware Prediction under Covariate Shift Anqi Liu, Rizal Fathony, Brian D. Ziebart. ArXiv Preprints, 2016.

Thank You