

AP-Perf: Incorporating Generic Performance Metrics in Differentiable Learning

RIZAL FATHONY AND ZICO KOLTER (1),(2)

(1) Carnegie Melon University(2) Bosch Center for Al

Highlight of our paper

A generic framework and programming tools that enable practitioners to easily align training objective with the evaluation metric

Integration with ML Pipelines

Easily incorporates custom performance metrics into machine learning pipeline

```
class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(30, 100)
        self.fc2 = nn.Linear(100, 100)
        self.fc3 = nn.Linear(100, 1)
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        return self.fc3(x).squeeze()
```

model = Net().to(device)
criterion = nn.BCEWithLogitsLoss().to(device)

```
optimizer.zero_grad()
objective = criterion(model(inputs), labels)
objective.backward()
optimizer.step()
```

Leaning using binary cross entropy

*) Code in PyTorch

```
class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(30, 100)
        self.fc2 = nn.Linear(100, 100)
        self.fc3 = nn.Linear(100, 1)
```

```
def forward(self, x):
    x = F.relu(self.fc1(x))
    x = F.relu(self.fc2(x))
    return self.fc3(x).squeeze()
```

```
class FBeta(PerformanceMetric):
    def __init__(self, beta):
        self.beta = beta
```

```
def define(self, C: Confusion_Matrix):
    return ((1 + self.beta ** 2) * C.tp) \
        / ((self.beta ** 2) * C.ap + C.pp)
```

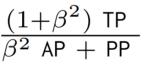
```
f2_score = FBeta(2)
f2_score.initialize()
f2_score.enforce_special_case_positive()
```

```
model = Net().to(device)
criterion = MetricLayer(f2_score).to(device)
```

```
optimizer.zero_grad()
objective = criterion(model(inputs), labels)
objective.backward()
optimizer.step()
```

Leaning using AP formulation for F2-metric

F_{β} score definition



Motivation

Example: Digit Recognition

0	0	0	0	0	0	0	0	D	٥	0	0
1	l	١	١	١	1	1	(/	1	١	1
2	ູ	2	2	ð	J	2	2	ደ	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3
4	4	٤	Y	4	4	Ч	4	4	4	4	4
5	5	5	5	5	\$	5	Б	5	5	5	5
6	G	6	6	6	6	6	6	Ь	6	Q	6
7	7	7	٦	7	7	ч	7	7	7	7	7
8	T	8	8	8	8	Р	8	8	8	8	8
9	૧	9	9	9	ዋ	٩	9	٩	η	٩	9

Evaluation Metric:

Performance Metric: Accuracy

Accuracy = $\frac{\text{# correct prediction}}{\text{# sample}}$

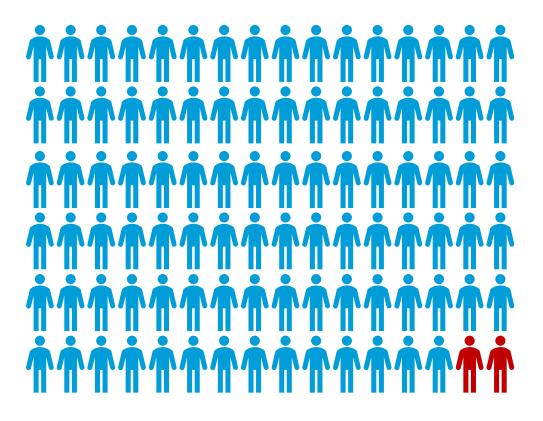
Loss Metric: Zero-One Loss

Zero-One Loss = $\frac{\# \text{ incorrect prediction}}{\# \text{ sample}}$

Most widely used metric!

Accuracy metric is not always desirable

Example: Disease Prediction (imbalanced dataset)



98% of the samples: healthy (negative samples)2% of the samples: have disease (positive samples)

Predict all samples as negative: Accuracy metric: 98%

Confucio					
Confusion Matrix			Act		
			Positive	Negative	
		Positive	True	False	Predicted
			Pos. (TP)	Pos. (FP)	Pos. (PP)
	Pred		False	True	Predicted
	P	Negative	Neg. (FN)	Neg. (TN)	Neg. (PN)
		Actual	Actual	All Data	
		Pos. (AP)	Neg. (AN)	(ALL)	

Precision = $\frac{\# \text{ true positive}}{\# \text{ predicted positive}}$ Recall = $\frac{\# \text{ true positive}}{\# \text{ actual positive}}$ Specificity = $\frac{\# \text{ true negative}}{\# \text{ actual negative}}$ Sensitivity = $\frac{\# \text{ true positive}}{\# \text{ actual positive}}$

Ш

F1-score =
$$\frac{2 \cdot \text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

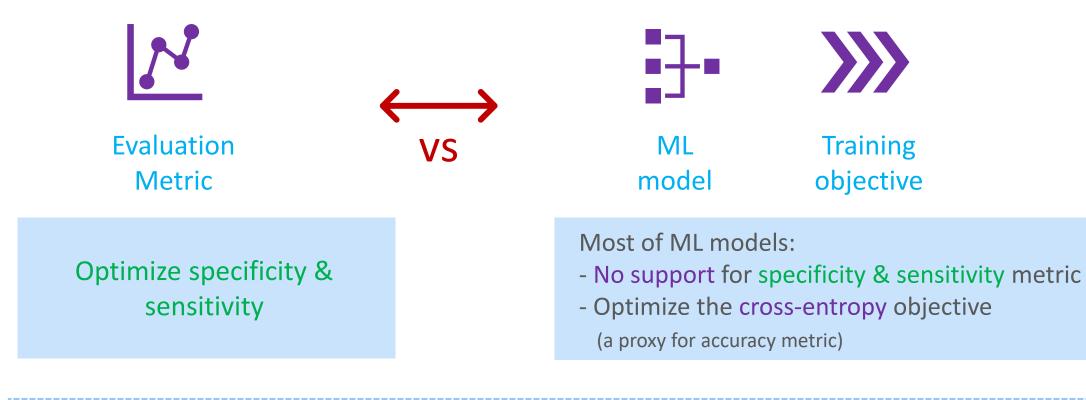
F_{\beta}-score = $\frac{(1 + \beta^2) \cdot \text{precision} \cdot \text{recall}}{(\beta^2 \cdot \text{precision}) + \text{recall}}$

Learning Tasks & Evaluation Metrics

Machine Learning Tasks	Popular Evaluation Metrics
Imbalanced Datasets	 F1-Score Area under ROC Curve (AUC) Precision vs Recall
Medical classification tasks	 Specificity Sensitivity Bookmaker Informedness
Information retrieval tasks	 Precision@k Mean Average Precision (MAP) Discounted cumulative gain (DCG)
Weighted classification tasks	- Cost-sensitive loss metric
Rating tasks	Cohen's kappa scoreFleiss' kappa score
Computational biology tasks	 Precision-Recall curve Matthews correlation coefficient (MCC)

Evaluation Metric vs Training Model Mismatch

Example: Disease prediction



Discrepancy: Evaluation metrics vs training objective

Inferior performance results (Cortes & Mohri, 2004; Eban et.al, 2016)

Our paper

A generic framework and programming tools that enable practitioners to easily align training objective with the evaluation metric

Related Works

Evaluation Metrics

Decomposable Metrics

Can be decomposed into sample-wise sum Example: accuracy, ordinal regression, and cost-sensitive metrics.

Non-Decomposable Metrics

Cannot be decomposed into sample-wise sum

Example: F1-score, GPR, informedness, MCC, Kappa score.

Common in many applications

Learning Algorithm Design

Empirical Risk Minimization Framework: Approximate the evaluation metrics (discrete, non-continuous) with convex surrogate losses.

Binary classification | accuracy

Evaluation Metric:

Accuracy metric

- **Convex Surrogate Losses**
- ✓ Hinge Loss :: Support Vector Machine
- ✓ Log Loss :: Logistic Regression
- ✓ Exponential Loss :: AdaBoost

Non-decomposable metrics

SVM-based model: SVM-perf (Joachims, 2005)

- ✓ Works on many complex metrics
- ★ No statistical consistency guarantee
- X Does not provide easy tool to extend the method to custom metrics

Most of other models: (e.g.: Koyejo et al, 2014; Narashiman et al, 2014)

X Hard to extend to custom metrics

Neural Networks Learning

Currently the popular machine learning model. Use the classical surrogate losses as the last layer (objective).

Classification with accuracy metric

Objective: Cross entropy objective = Logistic regression (log-loss surrogate)

Non-decomposable metrics

Most of 'classical' models:

X Not applicable to NN learning

NN-targeted models:

(Eban et.al, 2016; Song et.al, 2016; Sanyal, et.al, 2018)

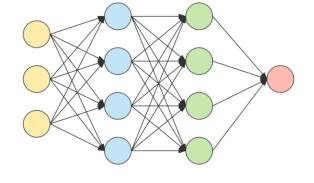
- X Only support few metrics
- X No support for custom metrics

Practitioners' perspective

- Aim to optimize an evaluation metric tailored specifically for their problem. (e.g. specificity, sensitivity, kappa score)
 - No learning models can easily optimize their specific evaluation metrics.

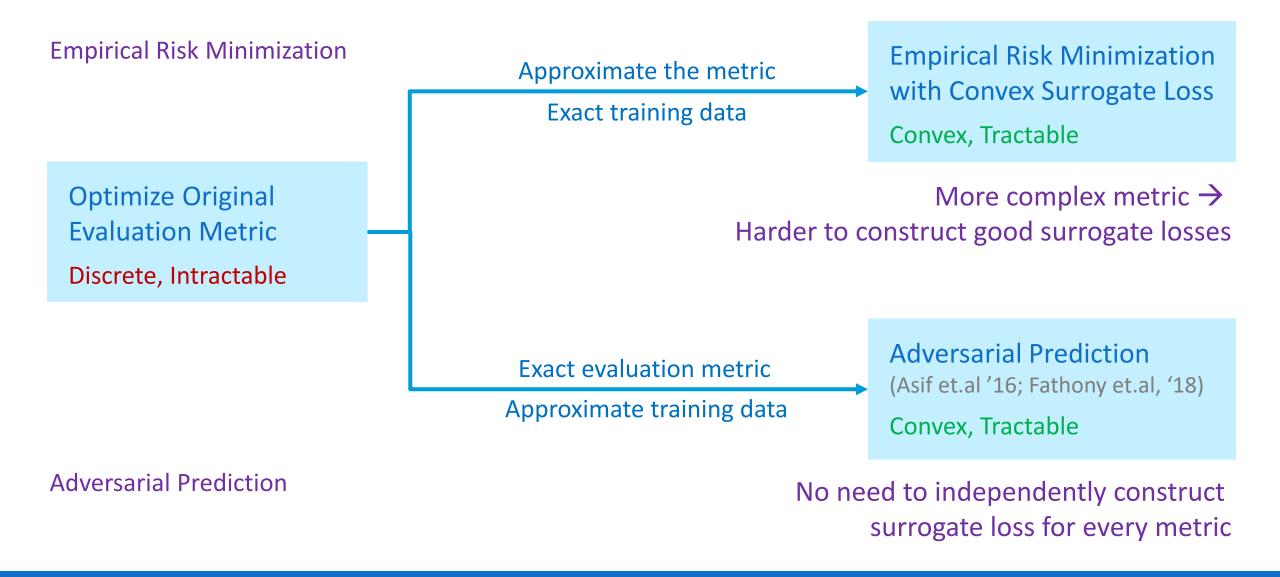
Choose the standard cross entropy instead

Mismatch between Evaluation Metric vs Training Model



Approach

Adversarial Prediction (Asif et.al, 2016; Fathony et.al, 2018)



Our Method

OPTIMIZING GENERIC NON-DECOMPOSABLE METRICS

Binary Classification with F1-score metric					
\mathbf{F}_{1} geometric $(\mathbf{\hat{x}}, \mathbf{x}) =$	2 * Precision * Recall	$2 \mathrm{TP}$	$2\sum_{i}\hat{y}_{i}y_{i}$		
$r 1$ -score $(\mathbf{y}, \mathbf{y}) =$	$= \frac{2 * \operatorname{Precision} * \operatorname{Recall}}{\operatorname{Precision} + \operatorname{Recall}} =$	$= \frac{1}{PP + AP}$	$=\overline{\sum_{i}\hat{y}_{i}+\sum_{i}y_{i}}$		

			Act		
			Positive		
		Positive	True	False	Predicted
	Pred.	rositive	Pos. (TP)	Pos. (FP)	Pos. (PP)
		Negative	False	True	Predicted
	$\mathbf{P}_{\mathbf{I}}$		Neg. (FN)	Neg. (TN)	Neg. (PN)
			Actual	Actual	All Data
i			Pos. (AP)	Neg. (AN)	(ALL)
ı				-	

AP | Decomposable metric (Asif et.al, 2015; Fathony et.al, 2016, 2017, 2018) :

Reduces to an optimization over sample-wise conditional probability distributions.

AP | Non-decomposable metric:

Requires optimization over full training set conditional probability distribution

Non-Decomposable Metric

Example:

 $\mathcal{P}(\hat{y}_i | \mathbf{x}_i)$ Size: 2 (binary) x # sample

 $\mathcal{P}(\hat{\mathbf{y}}|\mathbf{x})$ Size: 2 n (exponential)

Marginalization technique: optimize over marginalization distribution instead:

Original: $\begin{array}{c} \mathcal{P}(\hat{\mathbf{y}}|\mathbf{x}) \\ \text{Size: } 2^n \\ \text{Intractable!} \end{array}$ Marginalization: $\begin{array}{c} \mathcal{P}(\hat{y}_i = 1, \sum_i \hat{y}_i = k | \mathbf{x}) \\ \text{Size: } n^2 \\ \text{Size: } n^2 \end{array}$ Tractable!

Generic Non-Decomposable Performance Metrics

More complex performance metric

$$\operatorname{metric}(\hat{\mathbf{y}}, \mathbf{y}) = \sum_{j} \frac{a_{j} \operatorname{TP} + b_{j} \operatorname{TN} + f_{j}(\operatorname{PP}, \operatorname{AP})}{g_{j}(\operatorname{PP}, \operatorname{AP})}$$

			Act		
			Positive	Negative	
		Positive	True	False	Predicted
		rositive	Pos. (TP)	Pos. (FP)	Pos. (PP)
	Pred.	Nogativo	False	True	Predicted
	$\mathbf{P}_{\mathbf{l}}$	Negative	Neg. (FN)	Neg. (TN)	Neg. (PN)
			Actual	Actual	All Data
			Pos. (AP)	Neg. (AN)	(ALL)

Cover a vast range of performance metric families

Including most common use cases of non-decomposable metrics:

Precision, Recall, F_{β} -score, Balanced Accuracy, Specificity, Sensitivity, Informednes, Markedness, MCC, Kappa score, etc...

Practitioners can define their novel custom metrics

Metrics that specifically targeted to their novel problems.

Marginalization technique:

Original:
$$\mathcal{P}(\hat{\mathbf{y}}|\mathbf{x})$$

Size: 2^n Marginalization: $\mathcal{P}(\hat{y}_i = 1, \sum_i \hat{y}_i = k | \mathbf{x}) \& \mathcal{P}(\hat{y}_i = 0, \sum_i \hat{y}_i = k)$
Size: $2n^2$
Size: $2n^2$
Tractable!

Optimization: Gradient Descent + an ADMM-based solver (inner optimization)

Integration with ML Pipelines

Easily incorporates custom performance metrics into machine learning pipeline

```
class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(30, 100)
        self.fc2 = nn.Linear(100, 100)
        self.fc3 = nn.Linear(100, 1)
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        return self.fc3(x).squeeze()
```

model = Net().to(device)
criterion = nn.BCEWithLogitsLoss().to(device)

```
optimizer.zero_grad()
objective = criterion(model(inputs), labels)
objective.backward()
optimizer.step()
```

Leaning using binary cross entropy

*) Code in PyTorch

```
class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(30, 100)
        self.fc2 = nn.Linear(100, 100)
        self.fc3 = nn.Linear(100, 1)
```

```
def forward(self, x):
    x = F.relu(self.fc1(x))
    x = F.relu(self.fc2(x))
    return self.fc3(x).squeeze()
```

```
class FBeta(PerformanceMetric):
    def __init__(self, beta):
        self.beta = beta
```

```
def define(self, C: Confusion_Matrix):
    return ((1 + self.beta ** 2) * C.tp) \
        / ((self.beta ** 2) * C.ap + C.pp)
```

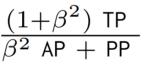
```
f2_score = FBeta(2)
f2_score.initialize()
f2_score.enforce_special_case_positive()
```

```
model = Net().to(device)
criterion = MetricLayer(f2_score).to(device)
```

```
optimizer.zero_grad()
objective = criterion(model(inputs), labels)
objective.backward()
optimizer.step()
```

Leaning using AP formulation for F2-metric

F_{β} score definition



AP-Perf: supports a wide variety of evaluation metrics

Code examples for other performance metrics:

Geometric Mean of Precision and Recall (GPR)

 $\frac{\text{TP}}{\sqrt{\text{PP} \cdot \text{AP}}}$

```
class GM_PrecRec(PerformanceMetric):
    def define(self, C: Confusion_Matrix):
        return C.tp / sqrt(C.ap * C.pp)
```

gpr = GM_PrecRec()
gpr.initialize()
gpr.enforce_special_case_positive()

Cohen's Kappa score

$$\frac{(\text{ TP + TN })/\text{ ALL } - (\text{ AP } \cdot \text{PP } + \text{AN } \cdot \text{PN })/\text{ ALL }^2}{1 - (\text{ AP } \cdot \text{PP } + \text{AN } \cdot \text{PN })/\text{ ALL }^2}$$

```
class Kappa(PerformanceMetric):
    def define(self, C: Confusion_Matrix):
        pe = (C.ap * C.pp + C.an * C.pn) / C.all**2
        num = (C.tp + C.tn) / C.all - pe
        den = 1 - pe
        return num / den
```

```
kappa = Kappa()
kappa.initialize()
kappa.enforce_special_case_positive()
kappa.enforce_special_case_negative()
```

Novel Custom Metrics

Write-your-own Novel Metrics

Example:

a weighted modification to the Cohen's Kappa score and the Mathews correlation coefficient (MCC)

 $\begin{array}{l} 0.3 \cdot \frac{\left(0.7 \; \mathrm{TP} \; + \; 0.3 \; \mathrm{TN} \;\right) / \; \mathrm{ALL} \; - \; \left(0.7 \cdot \; \mathrm{AP} \; \cdot \; \mathrm{PP} \; + \; 0.3 \cdot \; \mathrm{AN} \; \cdot \; \mathrm{PN} \;\right) / \; \mathrm{ALL} \;^2}{1 - \left(0.7 \cdot \; \mathrm{AP} \; \cdot \; \mathrm{PP} \; + \; 0.3 \cdot \; \mathrm{AN} \; \cdot \; \mathrm{PN} \;\right) / \; \mathrm{ALL} \;^2} \\ + \; 0.7 \cdot \frac{\mathrm{TP} \; / \; \mathrm{ALL} \; - \; \left(\; \mathrm{AP} \; \cdot \; \mathrm{PP} \; \right) / \; \mathrm{ALL} \;^2}{\sqrt{\mathrm{AP} \; \cdot \; \mathrm{PP} \; \cdot \; \mathrm{AN} \; \cdot \; \mathrm{PN} \;} / \; \mathrm{ALL} \;^2} \end{array}$

```
class NovelMetric(PerformanceMetric):
    def define(self, C: Confusion_Matrix):
        pe = (0.7 * C.ap * C.pp + 0.3 * C.an * C.pn) / C.all**2
        num = (0.7 * C.tp + 0.3 * C.tn) / C.all - pe
        den = 1 - pe
        kappa = num / den
        num2 = C.tp / C.all - (C.ap * C.pp) / C.all**2
```

```
den2 = ap_perf.sqrt(C.ap * C.pp * C.an * C.pn) / C.all**2
mcc = num2 / den2
```

```
return 0.3 * kappa + 0.7 * mcc
```

```
novel_metric = NovelMetric()
novel_metric.initialize()
novel_metric.enforce_special_case_positive()
novel_metric.enforce_special_case_negative()
```

Empirical Results

Datasets: 20 UCI Datasets, MNIST, Fashion MNIST

Neural Networks: Multi Layer Perceptron, Convolutional NN

Performance Metrics:

1) Accuracy

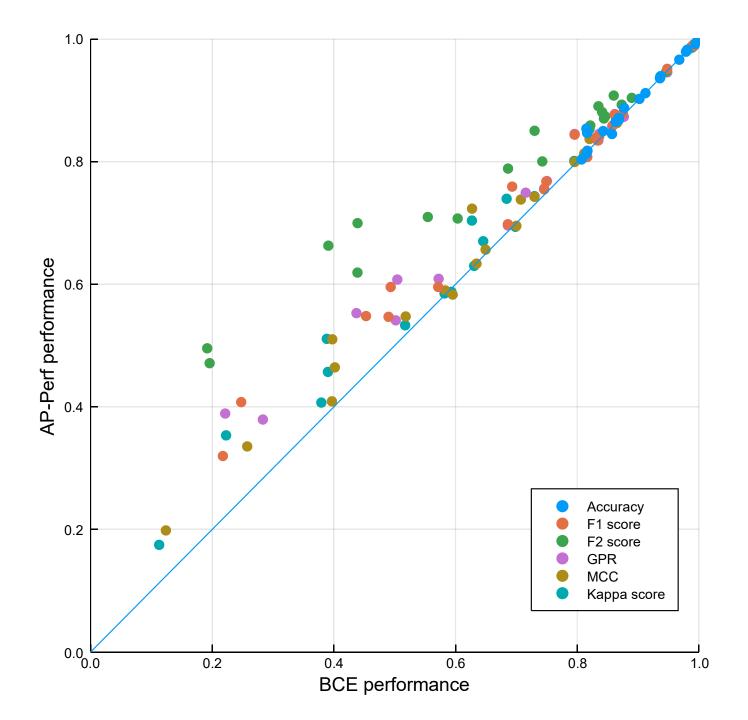
2) F1 score

3) F2 score

4) Geom. Prec. Rec. (GPR)

5) Mathews Cor. Coef. (MCC)

6) Cohen's Kappa score



Summary

	Statistical Consistency	Support Neural Network Learning	Support Custom Metrics	Easy Interface for Practitioners (to optimize custom metrics)
SVM-Perf (Joachim, 2005)	×	×	~	×
Plug-in based classifiers (Koyejo et al, 2014; Narashiman et al, 2014)		×	×	×
Global objectives (Eban et al, 2014)	X		X	X
DAME & DUPLE (Sanyal et al, 2018)	×		X	×
AP-Perf (Fathony & Kolter, our method)				

http://proceedings.mlr.press/v108/fathony20a.html

_

install: pip install ap_perf

github: https://github.com/rizalzaf/ap_perf

install:]add AdversarialPrediction

github: https://github.com/rizalzaf/AdversarialPrediction.jl

Thank You