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Examples (depend on the task)

• Zero one loss / accuracy metric
• Absolute loss (for ordinal regression)

• F1-score
• Precision@k
• Hamming loss (sum of 0-1 loss)



Example: Digit Recognition
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Performance Metric: Accuracy
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Loss Metric: Zero-One Loss

Binary/Multiclass Classification
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Loss Metric: Absolute Loss
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Predicted vs Actual Label:

Distance Loss

Example: Movie Rating Prediction

Ordinal Regression/Classification 
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2 TP

AP + PP

Performance Metric: F1 Score
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Confusion Matrix

Classification with Imbalance Datasets



Learning Tasks & Loss/Performance Metric

Machine Learning Tasks Popular Loss/Performance Metrics

Imbalance Datasets - F1-Score
- Area under ROC Curve (AUC)
- Precision vs Recall

Medical classification tasks - Specificity
- Sensitivity
- Bookmaker Informedness

Information retrieval tasks - Precision@k
- Mean Average Precision (MAP)
- Discounted cumulative gain (DCG)

Weighted classification tasks - Cost-sensitive loss metric

Rating tasks - Cohen’s kappa score
- Fleiss' kappa score

Computational biology tasks - Precision-Recall curve
- Matthews correlation coefficient (MCC)



Learning Framework 
How to design a learning algorithm?



Standard Approach for Learning Algorithms

Empirical Risk Minimization (ERM) [Vapnik, 1992]

• Assume a family of parametric hypothesis function 𝑓 (e.g. linear discriminator)

• Find the hypothesis 𝑓∗ that minimize the empirical risk:

Intractable optimization!

Since most of loss/performance metrics (e.g. Accuracy, F1-score) are 
discrete & non-continuous



Evaluation Metrics: Accuracy (Zero-One Loss)

Example: Binary Classification

Surrogate Losses

ERM: prescribes the use of convex surrogate loss to avoid intractability

Support Vector Machine (SVM) Logistic Regression (LR)



Adversarial Prediction
A distributionally robust learning framework



Original discrete loss metric:

Adversarial Prediction (Asif et.al, 2015; Fathony et.al, 2018a)

A Distributionally Robust Approach 

Adversarial Prediction:

Uncertainty set: moment matching on features

Predictor Adversary

Features Features

ERM: e.g. Logistic Regression

Operates on the conditional distribution 𝑃(𝑦|𝐱) rather than 𝑃(𝐱, 𝑦)



Primal:

Adversarial Prediction: Dual Formulation

Dual:

Lagrange multiplier 
for the constraints

discrete 
loss metric

Convex w.r.t. 𝜃

Lagrange duality, minimax duality



Decomposable Metrics
(Asif et.al, 2015; Fathony et.al, 2016, 2017, 2018a)

More complex losses: Reformulation as a Linear Program

Examples: Multiclass, Ordinal, 
Taxonomy-based, and 
Cost-sensitive Classification

where: 𝐋 is the loss in a matrix form, e.g:

for a 4-class zero-one loss

# of variable = 𝑘 + 1, where 𝑘 = # of class

Decomposable metrics:

Simple loss metrics:  Analytical solution
(e.g. Zero-One, Absolute Loss); by analyzing the equilibrium solution of zero-sum game.



Non-Decomposable 
Metrics



Non-Decomposable Metric

Dual:

Example: 
Binary Classification with F1-score metric

Dual | Marginal Formulation:

Size: 2𝑛

Size: 𝑛2

Intractable!



Generic Non-Decomposable Performance Metrics
Fathony & Kolter (in-submission)

More complex performance metric

= Cover most popular metrics: 
e.g. Precision, Recall, F𝛽-score, Balanced Accuracy,
Specificity, Sensitivity, Informednes, Kappa score, etc…

Dual | Marginal Formulation:

Size: 2𝑛2

𝑓 is a linear function over TP and TN



Integration with Deep Learning Pipeline
Fathony & Kolter (in-submission)

Programming Interface 
Enable programmers to easily incorporate custom performance metric into their deep learning pipeline

Leaning using binary cross entropy Leaning using AP formulation for F2-metric

*) The codes are written in Julia

F𝛽 score
definition



Integration with Deep Learning Pipeline
Fathony & Kolter (in-submission)

Code examples for other performance metrics:

*) The codes are written in Julia

Cohen’s kappa score metric

Geometric mean of precision and recall



Conclusion



Conclusion

Computationally efficient
via marginalization technique

Align with the loss/performance metric
by incorporating the metric into its learning objective

Perform well in practice

Adversarial Prediction Framework

A distributionally robust learning framework
with uncertainty set defined over the conditional distributions

Easy to integrate with deep learning pipeline
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