

Performance-Aligned Learning Algorithms using Distributionally Robustness Principle

Rizal Fathony

Post-Doctoral Fellow @ Carnegie Melon University

Joint work with: Anqi Liu, Kaiser Asif, Mohammad Bashiri, Wei Xing, Sima Behpour, Xinhua Zhang, Brian Ziebart, Zico Kolter.

Supervised Learning | Classification

Binary/Multiclass Classification

Example: Digit Recognition

Performance Metric: Accuracy

accuracy
$$(\hat{y}, y) = \frac{1}{n} \sum_{i} I(\hat{y}_i = y_i)$$

Loss Metric: Zero-One Loss

$$loss(\hat{y}, y) = \frac{1}{n} \sum_{i} I(\hat{y}_i \neq y_i)$$

Ordinal Regression/Classification

Example: Movie Rating Prediction

Predicted vs Actual Label:

Distance
$$\uparrow \rightarrow$$
 Loss \uparrow

Classification with Imbalance Datasets

Confusion Matrix

		Actual		
		Positive	Negative	
Pred.	Positive	True	False	Predicted
		Pos. (TP)	Pos. (FP)	Pos. (PP)
	Negative	False	True	Predicted
		Neg. (FN)	Neg. (TN)	Neg. (PN)
		Actual	Actual	All Data
		Pos. (AP)	Neg. (AN)	(ALL)

Performance Metric: F1 Score

$$F1score(\widehat{\boldsymbol{y}}, \boldsymbol{y}) = \frac{2 \text{ TP}}{\text{AP} + \text{PP}}$$

Learning Tasks & Loss/Performance Metric

Machine Learning Tasks	Popular Loss/Performance Metrics
Imbalance Datasets	 F1-Score Area under ROC Curve (AUC) Precision vs Recall
Medical classification tasks	 Specificity Sensitivity Bookmaker Informedness
Information retrieval tasks	 Precision@k Mean Average Precision (MAP) Discounted cumulative gain (DCG)
Weighted classification tasks	- Cost-sensitive loss metric
Rating tasks	Cohen's kappa scoreFleiss' kappa score
Computational biology tasks	 Precision-Recall curve Matthews correlation coefficient (MCC)

Learning Framework

How to design a learning algorithm?

Standard Approach for Learning Algorithms

Empirical Risk Minimization (ERM) [Vapnik, 1992]

- Assume a family of parametric hypothesis function f (e.g. linear discriminator)
- Find the hypothesis f^* that minimize the empirical risk:

$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} \operatorname{loss}(f(\mathbf{x}_{i}), y_{i}) = \min_{f} \mathbb{E}_{\tilde{P}(\mathbf{x}, y)} \left[\operatorname{loss}(f(\mathbf{x}), y) \right]$$

Intractable optimization!

Since most of loss/performance metrics (e.g. Accuracy, F1-score) are discrete & non-continuous

Surrogate Losses

ERM: prescribes the use of convex surrogate loss to avoid intractability

Example: Binary Classification

Evaluation Metrics: Accuracy (Zero-One Loss)

Adversarial Prediction

A distributionally robust learning framework

Adversarial Prediction (Asif et.al, 2015; Fathony et.al, 2018a) A Distributionally Robust Approach

Original discrete loss metric:

ERM: e.g. Logistic Regression

$$\min_{f} \mathbb{E}_{\tilde{P}(\mathbf{x},y)} \left[\operatorname{loss}(f(\mathbf{x}), y) \right] \longrightarrow \min_{f} \mathbb{E}_{\tilde{P}(\mathbf{x},y)} \left[\operatorname{LogLoss}(\hat{P}_{f}(\hat{y}|\mathbf{x}), y) \right]$$

Adversarial Prediction:

$$\min_{\mathcal{P}(\hat{y}|\mathbf{x})} \max_{\mathcal{Q}(\check{y}|\mathbf{x})\in\Xi} \mathbb{E}_{\tilde{P}(\mathbf{x})\mathcal{P}(\hat{y}|\mathbf{x})\mathcal{Q}(\check{y}|\mathbf{x})} \left[loss(\hat{y},\check{y}) \right]$$
Predictor Adversary

Uncertainty set: moment matching on features

$$\Xi \triangleq \{ \mathcal{Q} \mid \mathbb{E}_{\tilde{P}(\mathbf{x})\mathcal{Q}(\check{y}|\mathbf{x})} [\phi(\mathbf{x},\check{y})] = \mathbb{E}_{\tilde{P}(\mathbf{x},y)} [\phi(\mathbf{x},y)] \}$$
Features
Features
Features

- Operates on the conditional distribution $P(y|\mathbf{x})$ rather than $P(\mathbf{x}, y)$

Adversarial Prediction: Dual Formulation

Decomposable Metrics

(Asif et.al, 2015; Fathony et.al, 2016, 2017, 2018a) Decomposable metrics: $loss(\hat{\mathbf{y}}, \mathbf{y}) = \frac{1}{n} \sum_{i} loss(\hat{y}_i, y_i)$

Examples: Multiclass, Ordinal, Taxonomy-based, and Cost-sensitive Classification

$$\min_{\theta} \mathbb{E}_{\tilde{P}(\mathbf{x},y)} \left[\max_{\mathcal{Q}(\check{y}|\mathbf{x})} \min_{\mathcal{P}(\hat{y}|\mathbf{x})} \mathbb{E}_{\mathcal{P}(\hat{y}|\mathbf{x})} \mathbb{E}_{\mathcal{P}(\hat{y}|\mathbf{x})} \left[loss(\hat{y},\check{y}) + \theta^{\mathsf{T}} \left(\phi(\mathbf{x},\check{y}) - \phi(\mathbf{x},y) \right) \right] \right]$$

Simple loss metrics: Analytical solution

(e.g. Zero-One, Absolute Loss); by analyzing the equilibrium solution of zero-sum game.

More complex losses: Reformulation as a Linear Program

$$\begin{array}{ll} \max_{\mathbf{q},v} v + \mathbf{f}^{\mathsf{T}} \mathbf{q} - f_{y} & \text{where:} & \mathbf{L} \text{ is the loss in a matrix form, e.g:} \\ \text{s.t.: } \mathbf{L}_{(i,:)} \mathbf{q} \geq v \quad \forall i \in [k] & p_{i} = \hat{P}(\hat{Y} = i | \mathbf{x}) \\ q_{i} \geq 0 & \forall i \in [k] & q_{i} = \check{P}(\check{Y} = i | \mathbf{x}) \\ \mathbf{q}^{\mathsf{T}} \mathbf{1} = 1, & f_{i} = \theta^{\mathsf{T}} \phi(\mathbf{x}, i) \end{array} \qquad \begin{array}{l} \mathbf{L} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \\ \mathbf{L} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \\ \text{for a 4-class zero-one loss} \end{array}$$

of variable = k + 1, where k = # of class

Non-Decomposable Metrics

Dual | Marginal Formulation: $\max_{\theta} \mathbb{E}_{\tilde{P}(\mathbf{x},\mathbf{y})} \left[\min_{\mathcal{Q}(\check{\mathbf{y}}|\mathbf{x})} \max_{\mathcal{P}(\hat{\mathbf{y}}|\mathbf{x})} \sum_{k \in [0,n]} \sum_{l \in [0,n]} \frac{2}{k+l} \sum_{i} \mathcal{P}(\hat{y}_{i}=1, \sum_{i} \hat{y}_{i}=k|\mathbf{x}) \mathcal{Q}(\check{y}_{i}=1, \sum_{i} \check{y}_{i}=l|\mathbf{x}) \right]$ $-\theta^{\mathsf{T}} \sum_{i}^{n} \left[\mathcal{Q}(\check{y}_{i} = 1 | \mathbf{x}) \phi(\mathbf{x}, \check{y}_{i}) - \phi(\mathbf{x}, y_{i}) \right]$ Size: n^2

Non-Decomposable Metric

Example:

Binary Classification with F1-score metric

F1-score
$$(\hat{\mathbf{y}}, \mathbf{y}) = \frac{2 \text{ TP}}{\text{PP} + \text{AP}} = \frac{2 \sum_{i} \hat{y}_{i} y_{i}}{\sum_{i} \hat{y}_{i} + \sum_{i} y_{i}}$$

Dual:
$$\max_{\theta} \mathbb{E}_{\tilde{P}(\mathbf{x},\mathbf{y})} \left[\min_{\mathcal{Q}(\check{\mathbf{y}}|\mathbf{x})} \max_{\mathcal{P}(\hat{\mathbf{y}}|\mathbf{x})} \sum_{\hat{\mathbf{y}},\check{\mathbf{y}}} \mathcal{P}(\hat{\mathbf{y}}|\mathbf{x}) \mathcal{Q}(\check{\mathbf{y}}|\mathbf{x}) \left(\frac{2\sum_{i} \tilde{y}_{i} \tilde{y}_{i}}{\sum_{i} \hat{y}_{i} + \sum_{i} \check{y}_{i}} - \theta^{\mathsf{T}} \sum_{i}^{n} \left[\phi(\mathbf{x},\check{y}_{i}) - \phi(\mathbf{x},y_{i}) \right] \right] \right]$$

Size: 2^{n}

Intractable!

Generic Non-Decomposable Performance Metrics

Fathony & Kolter (in-submission)

More complex performance metric

$$\begin{aligned} \text{metric}(\hat{\mathbf{y}}, \mathbf{y}) &= \sum_{j} \frac{f_{j}(\text{ TP , TN , PP , AP })}{g_{j}(\text{ PP , AP })} \\ &= \sum_{j} \frac{f_{j}(\sum_{i} \hat{y}_{i}y_{i}, \sum_{i}(1-\hat{y}_{i})(1-y_{i}), \sum_{i} \hat{y}_{i}, \sum_{i} y_{i})}{g_{j}(\sum_{i} \hat{y}_{i}, \sum_{i} y_{i})} \end{aligned}$$

f is a linear function over TP and TN

Dual | Marginal Formulation:

$\max_{\theta} \mathbb{E}_{\tilde{P}(\mathbf{x},\mathbf{y})} \left[\min_{\mathcal{Q}(\check{\mathbf{y}} \mathbf{x})} \max_{\mathcal{P}(\hat{\mathbf{y}} \mathbf{x})} \sum_{k \in [0,n]} \sum_{l \in [0,n]} \sum_{j} \frac{1}{g_j(k,l)} f_j \left(\sum_{i} \mathcal{P}(\hat{y}_i) \right) \right]$	$\hat{y}_i = 1, \sum_i \hat{y}_i = k) \mathcal{Q}(\check{y}_i = 1, \sum_i \check{y}_i = l),$
---	--

$$\sum_{i} (\mathcal{P}(\hat{y}_{i}=0,\sum_{i}\hat{y}_{i}=k))(\mathcal{Q}(\check{y}_{i}=0,\sum_{i}\check{y}_{i}=l)),\ k,\ l) - \theta^{\intercal} \sum_{i}^{n} [\mathcal{Q}(\check{y}_{i}=1|\mathbf{x})\phi(\mathbf{x},\check{y}_{i}) - \phi(\mathbf{x},y_{i})]$$

Size: $2n^2$

			Actual		
			Positive	Negative	
		Positive	True	False	Predicted
	_:		Pos. (TP)	Pos. (FP)	Pos. (PP)
	ted	Negative	False	True	Predicted
	$\mathbf{P}_{\mathbf{l}}$		Neg. (FN)	Neg. (TN)	Neg. (PN)
			Actual	Actual	All Data
			Pos. (AP)	Neg. (AN)	(ALL)

Cover most popular metrics:

e.g. Precision, Recall, F_{β} -score, Balanced Accuracy, Specificity, Sensitivity, Informednes, Kappa score, etc...

Integration with Deep Learning Pipeline

Fathony & Kolter (in-submission)

Programming Interface

Enable programmers to easily incorporate custom performance metric into their deep learning pipeline

```
model = Chain(
   Conv((5, 5), 1=>20, relu),
   MaxPool((2,2)),
   Conv((5, 5), 20=>50, relu),
   MaxPool((2,2)),
   x -> reshape(x, :, size(x, 4)),
   Dense(4*4*50, 500),
   Dense(500, 1), vec
)
```

```
objective(x, y) = mean(
   logitbinarycrossentropy(model(x), y))
```

```
opt = ADAM(1e-3)
Flux.train!(objective, params(model),
    train_set, opt)
```

Leaning using binary cross entropy

*) The codes are written in Julia

```
model = Chain(
   Conv((5, 5), 1=>20, relu), MaxPool((2,2)),
   Conv((5, 5), 20=>50, relu), MaxPool((2,2)),
   x -> reshape(x, :, size(x, 4)),
   Dense(4*4*50, 500), Dense(500, 1), vec
)
@metric F2Score
function define(::Type{F2Score}, C::ConfusionMatrix)
   return ((1 + 2^2) * C.tp) / (2^2 * C.ap + C.pp)
end
f2_score = F2Score()
enforce_special_case_positive!(f2_score)
objective(x, y) = ap_objective(model(x), y, f2_score)
```

Flux.train!(objective, params(model), train_set, ADAM(1e-3))

Leaning using AP formulation for F2-metric

Integration with Deep Learning Pipeline

Fathony & Kolter (in-submission)

Code examples for other performance metrics:

```
@metric GM_PrecRec  # Geometric Mean of Prec and Rec
function define(::Type{GM_PrecRec}, C::ConfusionMatrix)
    return C.tp / sqrt(C.ap * C.pp)
end
gpr = GM_PrecRec()
enforce_special_case_positive!(gpr)
```

Geometric mean of precision and recall

```
@metric Kappa
function define(::Type{Kappa}, C::ConfusionMatrix)
    pe = (C.ap * C.pp + C.an * C.pn) / C.all^2
    num = (C.tp + C.tn) / C.all - pe
    den = 1 - pe
    return num / den
end
kappa = Kappa()
enforce_special_case_positive!(kappa)
enforce_special_case_negative!(kappa)
```

Cohen's kappa score metric

NAME	FORMULA	
F_{β} -score Geom. mean of Prec. & Recall Balanced Accuracy	$\frac{\frac{(1+\beta^2) \text{ TP}}{\beta^2 \text{ AP} + \text{ PP}}}{\frac{\text{TP}}{\sqrt{\text{ PP} \cdot \text{ AP}}}}$ $\frac{1}{2} \left(\frac{\text{TP}}{\text{ AP}} + \frac{\text{TN}}{\text{ AN}}\right)$	
Bookmaker Informedness	$\frac{\text{TP}}{\text{AP}} + \frac{\text{TN}}{\text{AN}} - 1$	
Markedness	$\frac{\text{TP}}{\text{PP}} + \frac{\text{TN}}{\text{PN}} - 1$	
Cohen's kappa score		
$(TP + TN) / ALL - (AP \cdot PP + AN \cdot PN) / ALL^{2}$		
$1-(AP \cdot PP + AN \cdot PN)/ALL^2$		

<pre>objective(x, y) = ap_objective(model(x),</pre>	y,	gpr)
<pre>Flux.train!(objective, params(model),</pre>		
<pre>train_set, ADAM(1e-3))</pre>		

*) The codes are written in Julia

Conclusion

Conclusion

Adversarial Prediction Framework

A distributionally robust learning framework with uncertainty set defined over the conditional distributions

- Align with the loss/performance metric by incorporating the metric into its learning objective
- Computationally efficient via marginalization technique

Easy to integrate with deep learning pipeline

References

- Adversarial Cost-Sensitive Classification
 Kaiser Asif, Wei Xing, Sima Behpour, and Brian D. Ziebart.
 Conference on Uncertainty in Artificial Intelligence (UAI), 2015.
- Adversarial Multiclass Classification: A Risk Minimization Perspective Rizal Fathony, Anqi Liu, Kaiser Asif, Brian D. Ziebart. Advances in Neural Information Processing Systems 29 (NeurIPS), 2016.
- Adversarial Surrogate Losses for Ordinal Regression
 Rizal Fathony, Mohammad Bashiri, Brian D. Ziebart.
 Advances in Neural Information Processing Systems 30 (NeurIPS), 2017.
- Consistent Robust Adversarial Prediction for General Multiclass Classification
 Rizal Fathony, Kaiser Asif, Anqi Liu, Mohammad Bashiri, Wei Xing, Sima Behpour, Xinhua Zhang, Brian D. Ziebart.
 ArXiv preprint, 2018.
- **AP-Perf: Incorporating Generic Performance Metrics in Differentiable Learning** Rizal Fathony and Zico Kolter In submission, 2019.

