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Abstract—In complex systems like social media and financial
transactions, diverse entities (users, groups, products) interact
through a multitude of relationships (friendships, comments, pur-
chases). These interactions can be represented by heterogeneous
graphs (graphs with many node and edge types). In many real-
world applications, these graphs may contain unusual patterns
or anomalies. Detecting anomalies, both entity (node) level and
interaction (edge) level anomalies, in these graphs are important,
as their occurrence may have serious implications. Node-level
anomalies may indicate abnormal behavior from a specific entity,
such as unexpected activity that could suggest fraud. Edge-
level anomalies may signify unusual interactions, like unexpected
changes in interaction frequency or pattern, potentially indicating
collaborative fraud like collusion.

Unfortunately, existing graph neural network anomaly detec-
tion models focus only on homogeneous graphs and consider
only node-level detection, rendering them incapable of harnessing
the full complexity of heterogeneous graph data. To address
this limitation, we present a new graph neural network model
that capable of simultaneously detecting node-level and edge-
level anomalies on heterogeneous graphs, by harnessing the rich
information in the entities and relations. We develop our model
as a type of graph autoencoder with a customized architecture
design to enable the detection of node-level and edge-level
anomalies simultaneously. Our graph neural network structure is
scalable, facilitating its application in large real-world scenarios.
Finally, our method outperforms previous anomaly detection
methods in the experiments.

Index Terms—Anomaly Detection, Graph Neural Networks

I. INTRODUCTION

Anomaly detection plays a crucial role in a variety of
real-world applications, including fraud detection, network
intrusion detection, e-commerce platform abuse detection, and
other applications across diverse domains such as manufac-
turing, healthcare, insurance, and medicine [1]–[4]. In many
of these applications, the datasets are often represented as
heterogeneous graphs, where nodes and edges depict a variety
of entities and their relationships, respectively. For instance,
in a social media network, nodes might represent users,
groups, and pages, while edges could signify different types
of interactions such as likes, comments, shares, or friendships.
Similarly, on an e-commerce platform, nodes could symbolize
customers, products, and sellers, and edges could indicate
purchase history, product viewing, or interactions between
customers and sellers. In a cybersecurity network, nodes could

represent different devices, servers, and users, and edges could
denote communication or data transfer between them.

The heterogeneous graphs created by the interaction in the
real-world scenarios above are usually rich in information.
This information can be represented as node and edge fea-
tures, providing a comprehensive view of the applications.
For example, in the context of an e-commerce platform,
node features could include customer demographics, product
categories, or seller ratings. Edge features, on the other hand,
could represent the frequency of purchases, the number of
product views, or the nature of customer-seller interactions,
such as communication frequency or review scores.

Across various domains, detecting anomaly patterns on
these heterogeneous graphs is important, as the occurrence
of these anomaly behaviors may have serious implications.
For example, the occurrence of anomaly behaviors in an e-
commerce platform may signal financial frauds such as stolen
credit cards or money laundering [2], while in a network
security system, anomalous events may indicate security
breaches [3]. Additionally, it is also crucial to have capability
in detecting anomaly patterns at both node-level and edge-
level. Anomalies at the node-level could suggest abnormal
behavior from a specific entity. For example, an entity might
start behaving differently or exhibit unexpected activity that
could indicate fraudulent behavior. Similarly, anomalies at the
edge-level could indicate unusual interactions or relationships.
For instance, the frequency or pattern of interactions between
entities might change unexpectedly, suggesting collaborative
fraudulent patterns, such as collusion. Therefore, having a
high-performing anomaly detection system capable of simul-
taneously performing node-level and edge-level detections is
beneficial in these domains. Unfortunately, current anomaly
detection models are not capable of performing the task.

In most settings, anomaly detection is conducted without
label supervision, i.e., in an unsupervised learning manner [4].
This approach provides advantages over supervised learning
techniques due to its flexibility. In many applications,
obtaining anomaly labels is challenging, as anomalous events
occur infrequently [4]. Moreover, in real-world applications
such as fraud detection, fraudsters are motivated to continually
innovate their fraudulent methods. This makes supervised
models, which rely on historical labels, being unable to detect
these new innovations from the fraudsters [5].



In recent years, many graph neural network (GNN) models
have been proposed for unsupervised anomaly detection tasks.
However, the vast majority of the previous GNN models ex-
clusively detect node-level anomalies on homogeneous graphs
with node attributes only. This applies to reconstruction-based
models (such as DOMINANT [6], AnomalyDAE [7], AEGIS
[8], etc. [9]–[12]), contrastive-based models (like CoLA [13],
CONAD [14], ANEMONE [15], etc. [16]–[20]), and others
[21]–[24]. While a few GNN models have been proposed for
scenarios beyond homogeneous graphs, they do not meet the
requirements of the aforementioned applications. GraphBEAN
[25] attempts to include multiple entities in detection but
is limited to two entities (bipartite graphs). AHEAD [26]
performs anomaly detection in heterogeneous graphs, but it
is confined to node-level detection and cannot leverage edge
features in its detection process.

Motivated by the shortcomings above, we propose a new
graph neural network model that simultaneously performs
node-level and edge-level anomaly detection on heterogeneous
graphs. Our method is also capable of incorporating both node
features and edge features into the detection. We name our
method the Heterogeneous Node-and-Edge-Attributed Graph
Neural Networks (HeagNet). To the best of our knowledge,
HeagNet is the first GNN-based anomaly detection model that
can detect node-level and edge-level anomaly simultaneously
on heterogeneous graphs.

To achieve the desired goal, we develop HeagNet as a type
of autoencoder with a customize bottleneck to facilitate node-
level and edge-level detection. The network is composed of
one encoder and two decoders (feature and structure decoder).
Each convolution layer in the encoder processes the hetero-
geneous graph with all its node and edge representations to
produce new representations for each node and edge. However,
the last layer of the encoder only produces latent node repre-
sentations. These latent node representations are then used by
the feature decoder to reconstruct the full graph with complete
node and edge features. The latent representation is also used
by the structure decoder to learn the graph’s structure. This
bottleneck construction ensures that the network learns the
underlying patterns in the input graph and reconstructs the
original graph based on these patterns, rather than simply
copying the original input graph. The reconstructed errors of
each edge and node in the graph serve as the basis for anomaly
score creation.

We develop two versions of our model, HeagNet-C and
HeagNet-A, which differ in how the model aggregates in-
formation from different edge types. HeagNet-A incorporates
attention mechanisms in the aggregation, while HeagNet-C uti-
lizes standard convolutional-based aggregation. Moreover, we
design our model with scalability in mind, using customized
negative edge sampling and neighboring subgraph sampling.
This enables our models to be applied to large industrial
graph data. Finally, we demonstrate the empirical benefits of
our method over previous graph anomaly models on several
publicly available heterogeneous graph datasets.

II. RELATED WORKS

A. Anomaly detection on homogeneous graphs

In recent years, numerous graph neural network (GNN)
models have been proposed for unsupervised anomaly detec-
tion in homogeneous graphs. One of the pioneering models,
DOMINANT [6], adopts an autoencoder-style architecture
for graph anomaly detection, where the anomaly score is
derived from the autoencoder’s reconstruction error. Anoma-
lyDAE [7] extends the architecture by employing two distinct
autoencoders, one dedicated to the graph structure and the
other to attributes. Many other GNN models follow these
reconstruction-based models, including AEGIS [8], GAAN
[9], GUIDE [10], GAD-NR [11], and ADA-GAD [12].

Another family of models uses contrastive-based losses as
a means to train the anomaly model. The models work by
contrasting positive pairs of related nodes or subgraphs, with
negative pairs (unrelated nodes/subgraphs). The anomaly score
for a node is calculated from the difference of the predicted
score of its positive pair (should be close to 1 for normal node)
and the scores for its negative pairs. This technique is used in
many models such as: CoLA [13], CONAD [14], ANEMONE
[15], GCCAD [16], GRADATE [17], and others [18]–[20].
Some other GNN models combine both reconstruction and
contrastive loss (such as SL-GAD [23] and Mul-GAD [24]),
while others use different approaches in anomaly detection
(such as OCGNN [22] and AdONE [21]).

B. GNN models for heterogeneous graphs

Many GNN architectures have been proposed for
heterogeneous graphs, particularly in supervised and semi-
supervised settings. Metapath-based methods like HAN [27],
HetGNN [28], GTN [29], MAGNN [30], and SeHGNN [31]
capture the structural information via predefined composite
relations (metapaths). Metapath-free methods like RGCN
[32], RSHN [33], HetSANN [34], HGT [35], SimpleHGN
[36], BA-GNN [37], and HINormer [38] added extra modules
(e.g. attentions) to the standard GNN models for capturing
semantic information like node type and edge type.

C. Anomaly detection on heterogeneous graphs

Even though many heterogeneous graphs models have been
proposed in supervised and semi-supervised settings, only a
few methods are designed for unsupervised anomaly detec-
tion in heterogeneous graphs. GraphBEAN [25] attempts to
incorporate multiple entities into the detection but is limited to
two entities in bipartite graphs. AHEAD [26] utilizes an HGT
backbone for anomaly detection in heterogeneous graphs.
However, it is limited to node-level detection only and cannot
leverage edge features in the detection process.

III. PROBLEM FORMULATION

We begin our problem formulation by describing our no-
tations, starting with the definition of the node-and-edge-
attributed heterogeneous graph. We are given a heterogeneous
graph G = (V, E , T ,R), where V and E collect the nodes and
edges, respectively. Each node vi ∈ V is associated with a type



t ∈ T , via type mapping functions δ : V → T . Similarly, each
edge is also associated with an edge/relation type r ∈ R, thus,
we denote it using a triplet e(r)i,j ≜ (vi, r, vj) ∈ E . In terms of
the attributes, each node vi ∈ V and edge e

(r)
i,j ∈ E are also

associated with a feature vector xv
i and xe(r)

i,j , respectively.
Feature vectors for the same node/edge type have the same di-
mension, but they could vary across different node/edge types.

Next, we describe our neighboring operators. The node
neighborhood operator, N (r)(vi), returns the list of all neigh-
boring nodes from node vi under relation (edge type) r, i.e.,
N (r)(vi) = {vj ∈ V | (vi, r, vj) ∈ E ∨ (vj , r, vi) ∈ E}.
We also define edge neighborhood operator, M(r)(vi), that
behaves similarly to N (r)(vi), but returns the edge con-
necting to the neighboring node, instead of the node itself,
i.e.: M(r)(vi) = {e(r)i,j | (vi, r, vj) ∈ E ;∀vj ∈ V} ∪
{e(r)j,i | (vj , r, vi) ∈ E ;∀vj ∈ V}. Finally, we have edge
type neighborhood function, R(vi), that returns all relations
(edge types) that are attached to node vi, i.e. R(vi) = {r ∈
R | (vi, r, vj) ∈ E ∨ (vj , r, vi) ∈ E ;∀vj ∈ V}.

In our graph anomaly detection, we formulate the problem
as a ranking problem with scoring functions, where a larger
score means a higher degree of abnormality. Particularly, we
need to produce scoring functions for both node-level and
edge-level anomaly detections. As there are many node types
and edge types in heterogeneous graphs, the scoring functions
could be different for each node/edge type. Therefore, we have
up to |T |+|R| scoring functions for node-level and edge-level
graph anomaly detections.

IV. METHODOLOGY

We will now describe our approach to addressing the
aforementioned graph anomaly detection problem.

A. Architecture Overview

The main consideration in our model design is that the
model should be capable of producing both node-level and
edge-level scores simultaneously. Additionally, it must utilize
all the rich information from the node and edge features of
each node/edge type, as well as the graph structure. We design
HeagNet as a reconstruction-based graph anomaly detection
model. HeagNet architecture follows graph autoencoder archi-
tecture with a single graph encoder and two decoders: a feature
decoder and a structure decoder. The key difference of Heag-
Net compared to other models lies in the type of graph it can
take as input and produce as output (heterogeneous graph with
node and edge attributes), and more importantly, the design of
the autoencoder architecture to be able to achieve the desired
goal of simultaneously performing node-level and edge-level
anomaly detection on the graph. We will describe the details
of our architecture choice in the following subsections.

B. Graph Convolution

The graph convolution operation in HeagNet is designed to
incorporate signals from neighboring nodes and edges with
various node/edge types, as well as their rich information in
the form of node/edge features. This convolution operation

also needs to produce a new representation for every node in
each node type and every edge in each edge type.

Let h denote the intermediate representation vector where
we use a superscript to indicate node/edge representation.
Specifically, we use hv

i to denote the representation of the
node vi, and he(r)

i,j for the representation of the edge e
(r)
i,j .

Additionally, we add another superscript to indicate the
information about the layer. Specifically, for the k-th layer,
the node and edge representation symbols are {hv

i }(k) and
{he(r)

i,j }(k), respectively.
1) Intra-relation message passing: For the k-th layer, the

graph convolution layer takes the previous layer representa-
tions {hv

i }(k−1),∀vi ∈ V and {he(r)

i,j }(k−1),∀e(r)i,j ∈ E to
compute the new node and edge representations. As there
are many node/edge types, to create new node representation,
we first perform intra-relation (edge type) message passing
and aggregation. Let Msg[ )vi]

(r,k) denote the message that
comes to node vi via relation r in the k-th layer. This message
comes from the neighboring nodes as well as the neighboring
edges under relation r. We perform aggregation to the node
and edge messages independently, and then concatenate them.
We then pass the concatenated messages to a linear operation
parameterized by W

(r,k)
v and b

(r,k)
v . Finally, we normalize the

output of the linear operation using batch normalization (BN)
and pass it to a ReLU activation function as follows:

Msg[ )vi]
(r,k) = ReLU

(
BN

(
b(r,k)
v + (1)

W(r,k)
v ∗

{
Agg

{
{hv

j}(k−1) | ∀vj ∈ N (r)(vi)
}

∪ Agg
{
{he(r)

i,j }(k−1) | ∀e(r)i,j ∈ M(r)(vi)
}}))

Here, ∪ represents concatenation operator, whereas Agg de-
note the aggregation function. This could be a simple aggre-
gation function like Mean and Max, a combination of both, or
more complex aggregation functions.

2) Inter-relation message passing: After computing intra-
relation messages from different relations, we then perform
inter-relation message passing to create new node representa-
tion. We aggregate the intra-relation messages for each relation
connected to the target node vi. We then concatenate it with
the previous representation vi followed by applying linear
operation parameterized by W

(k)
v and b

(k)
v . Similarly, we

also apply batch normalization (BN) and ReLU activation to
produce the new representation for vi, as follow:

{hv
i }(k) = ReLU

(
BN

(
b(k)
v +W(k)

v ∗
{
{hv

i }(k−1) (2)

∪ Agg
{

Msg[ )vi]
(r,k) | ∀r ∈ R(vi)

}}))
In addition to the inter-relation message passing and aggre-

gation above, we also create another message passing scheme
based on an attention mechanism. This attention mechanism
tries to learn the importance of different relations to the target
node, by putting different weights for each relation in the
aggregation process. Specifically, we compute the attention of
the target node vi to each relation r in the k-th layer, α(r,k)

i ,



Fig. 1: HeagNet architecture with 4 graph convolution layers.

as a softmax over the intra-relation messages, Msg[ )vi]
(r,k),

multiplied by a learnable weight vector Φ(r,k), i.e.:

α
(r,k)
i =

exp
{

Msg[ )vi]
(r,k) · Φ(r,k)

}∑
s∈R(vi)

exp
{

Msg[ )vi](s,k) · Φ(s,k)
} (3)

We then use the attention variables to perform weighted
aggregation of the messages that come from each relation.
To produce the new representation for node vi, we add the
aggregated message with the node’s previous representation
multiplied by a weight matrix W

(k)
l , and then apply normal-

ization and activation function, i.e.:

{hv
i }(k) = ReLU

(
BN

(∑
r∈R(vi)

α
(r,k)
i · Msg[ )vi]

(r,k)

+W
(k)
l ∗ {hv

i }(k−1)
))

(4)

We name the version of our model that uses the attention
mechanism above as HeagNet-A, whereas the one that uses
the regular aggregation (Eq. (2)) as HeagNet-C.

3) Computing the next edge representation: We have de-
scribed the method for computing the next node representation.
In this subsection, we will describe the technique to compute
the next edge representation. The messages that go to edge e

(r)
i,j

simply comes from the nodes connected to the edge, i.e., vi
and vj , and its own previous representation. For computing the
next edge representation, we simply concatenate the messages
and then apply a linear operation parameterized by W

(r,k)
e

and b
(r,k)
e . Finally, we apply a normalization and activation

function as follows:

Msg[ )e
(r)
i,j ]

(k)=
{
{hv

i }(k−1)∪{hv
j}(k−1)∪{he(r)

i,j }(k−1)
}

(5)

{he(r)

i,j }(k)=ReLU
(
BN

(
W(r,k)

e · Msg[ )e
(r)
i,j ]

(k)+b(r,k)
e

))
(6)

C. Network Architecture
We have described HeagNet’s convolution operations and

message passing scheme, such that it can take heterogeneous

graphs with node and edge attributes as input and produce
similar graph structures as the output. In this section, we will
describe how we assemble the basic convolution operation
above into a full network architecture capable of performing
node-level and edge-level anomaly detection.

HeagNet is designed as a graph autoencoder with one
encoder and two decoders (feature and structure decoder).
It consists of K (even number) convolution layers, where
we use half of them for the encoder and the other half
for the feature decoder. In each convolution layer, the layer
takes the heterogeneous graph with all its node and edge
representations. It then performs a convolution operation to
produce new representation for each node and each edge.
The exception is on the last layer of the encoder. Instead of
producing both node and edge representations, it only produces
latent representations for the nodes, without generating edge
representations. Additionally, each node in the last encoder
layer is not allowed to use its own previous representation.

The node-only latent representations constructed by the en-
coder are then picked up by the feature decoder to produce the
full reconstructed graph with complete node features and edge
features via a series of graph convolutions. Additionally, we
use the structure decoder to allow the model to learn the struc-
ture of the graph, since in the feature decoder, the graph struc-
ture is given as the basis to perform convolution operations.

This construction serves as the bottleneck of the HeagNet
autoencoder architecture, so that the network cannot just copy
the original input graph to do the reconstruction. It has to learn
the underlying patterns in the input graph and reconstruct the
original graph based on the discovered patterns. Additionally,
by the construction above, the node latent representations
constructed by the encoder are forced to learn its own node
feature, all K-hop neighboring nodes and their node features,
as well as the neighboring edges and their edge features, and
the local graph structures surrounding the node.



1) Encoder: The encoder consists of K/2 graph convolu-
tion layers. We set the input to the first layer as the original
graph’s node and edge features, i.e., {hv

i }(0) = xv
i and

{he(r)

i,j }(0) = xe(r)

i,j . The convolution operations for the next
layers follow our previous description in Section IV-B. The
exception is on the last layer, where we only produce node
representation and we do not allow the node to copy its
previous representation. Specifically, we replace Eq. (2) with:

{hv
i }(K/2) = ReLU

(
BN

(
b(K/2)
v +W(K/2)

v ∗
{

(7)

∪ Agg
{

Msg[ )vi]
(r,K/2) | ∀r ∈ R(vi)

}}))
for HeagNet-C, or we replace Eq. (4) with:

{hv
i }(K/2) = ReLU

(
BN

(
(8)∑

r∈R(vi)
α
(r,K/2)
i · Msg[ )vi]

(r,K/2)
))

for HeagNet-A. We then set the latent representation z as the
output of the layer, i.e. zi = {hv

i }(K/2),∀vi ∈ V .
2) Feature Decoder: The feature decoder also consists of

K/2 convolution layers. The first layer takes the latent node
representations from the encoder without accepting edge repre-
sentations, as the encoder only produces node representations.
Specifically, we replace Eq. (1) and Eq. (5) with:

Msg[ )vi]
(r,K2 +1) = ReLU

(
BN

(
b
(r,K2+1)
v + (9)

W
(r,K2 +1)
v ∗

{
Agg

{
zj | ∀vj ∈ N (r)(vi)

}
Msg[ )e

(r)
i,j ]

(K
2 +1) = {zi ∪ zj} . (10)

The remaining layers follow the regular convolution operations
described in Section IV-B. The output of the last layer becomes
the reconstructed node and edge features, i.e. x̂v

i = {hv
i }(K)

and x̂e(r)

i,j = {he
i,j}(r,K).

3) Structure Decoder: The structure decoder is tasked to
enforce the latent node representation z to learn the structure
of the graph. This is needed as the feature decoder takes
the structure of the graph as given. The structure decoder is
required to predict if an edge exists between two nodes, based
on the latent representation of each node. Specifically, for each
relation r, we create two multi-layer perceptrons (MLPs), one
for the left side node type t1 of the relation (MLP(r)

t1 ), another
one from the right side node type t2 (MLP(r)

t2 ). For each node
in the left node type {vi ∈ V | δ(vi) = t1} and each node
in the right node type {vj ∈ V | δ(vj) = t2}, the structure
decoder defines the probability of the existence of the edge
connecting vi and vj under relation r as:

Pr
(
e
(r)
i,j ∈ E

)
= sigm(MLP(r)

t1 (zi) · MLP(r)
t2 (zj)) (11)

In practice, most node pairs are not connected via an edge.
Therefore, we do not need to consider all pairs to learn the
graph structure. Instead, we use all pairs of connected nodes
in the graph as the “positive” instances, and just sample a
set of non-connected nodes as the “negative” instances. Let
us define the set of non-connected node pairs as E− =

{
e
(r)
i,j /∈ E | ∀vi, vj ∈ V;∀r ∈ R

}
. We then define a set of

instances, Ẽ± = E ∪ Sample(E−), that the structure decoder
needs to operate on. Specifically, we use a uniform random
sampling to get the instances in E− with a pre-specified
number of instances, such as a small multiple of the number
of edges in the graph (E).

D. Model Training

We have described our network architecture. In this section,
we will explain the procedure to train the network.

1) Loss Function: To train HeagNet, we use a recon-
struction error loss function that compares the output of the
reconstructed node and edge features from the feature decoder,
x̂v
i and x̂e(r)

i,j , with the original graph features using mean
squared error (MSE). The loss also compares the probability
of the existence of an edge produced by the structure decoder,
Pr(e(r)i,j ∈ E), with the ground truth label of the existence of
the edges in the original graph, via binary cross entropy (BCE)
loss. Specifically, our loss is defined as follow:

L =
1

|V|
∑
vi∈V

1
dt
∥xv

i −x̂v
i ∥22 +

1

|E|
∑

e
(r)
i,j ∈E

1
dr
∥xe(r)

i,j −x̂e(r)

i,j ∥22

+
η

|Ẽ±|

∑
(i,j)∈Ẽ±

{
− I

(
e
(r)
i,j ∈ E

)
log

(
Pr(e(r)i,j ∈ E)

)
− I

(
e
(r)
i,j /∈ E

)
log

(
1− Pr(e(r)i,j ∈ E)

)}
, (12)

where I indicates the indicator function, whereas dt and dr
denote the dimension of the features for the particular node
type and edge type, respectively. The constant η is used for
balancing the feature decoder’s MSE loss and the structure
decoder’s BCE loss.

2) Forward and Backward Propagation: We have described
all the components of HeagNet. In the training procedure,
we perform forward propagation by feeding a node-and-edge-
attributed heterogeneous graph to the model. The forward
propagation process is illustrated in Figure 1, using a 4 layer
HeagNet as an example. The encoder takes the input graph
G, with its node and edge features (xv and xe, respectively)
for each node type and edge type. The different colors of
the node and edges in the graph represent different node/edge
types. The matrix illustration of the node/edge features also
reflect different colors representing different node/edge types.
The dimension of node/edge features in each node/edge type
can also be different, reflected in the matrix illustration as well.

The first encoder layer then processes the input graph
and constructs new node and edge representations (hv and
he respectively) for each node/edge type, which then be
passed to the next layer. The second (last) encoder layer takes
these representations as its input (in addition to the graph
structure) to produce the node latent representation z for
each node type. Note that the layer does not produce edge
representations. The feature decoder then takes z for each
node type and process it to a series of convolution layers,
to produce the reconstructed node and edge features (x̂v and
x̂e, respectively) for each node/edge type.



TABLE I: Dataset properties.

Dataset #(node, edge) type #node #edge avg deg. avg (node, edge) dim. node +ratio edge +ratio

Telecom-Small (4, 3) 80,380 890,000 11.1 (370, 50) 0.012 0.005
Reddit (4, 4) 64,180 76,193 1.2 (384, 384) 0.010 0.011
Brightkite (5, 4) 125,467 608,466 4.8 (10, 8) 0.026 0.047
Gowalla (5, 4) 282,812 2,092,019 7.4 (10, 8) 0.018 0.012
Telecom-Large (4, 3) 170,380 8,900,000 52.2 (370, 50) 0.017 0.002

Another path from the latent representation goes to the
feature decoder, where we have a pair of MLPs for each
edge type (relation). For each relation, a pair of MLPs takes
the node latent representation of the node types connected
by the relation as the input. It then performs a dot product
on the outputs of the MLPs for each node in the left-side
node type, with the ones from the right-side node type of
the relation, followed by a sigmoid function, to predict the
probability of the existence of an edge connecting the nodes.
These probability outputs alongside the reconstructed node
and edge features for each node/edge type are then passed to
a loss function to produce the objective values. This objective
is then used to train the model. For computing backward
propagation (gradient) and performing updates to the model,
we resort to a deep learning framework.

E. Anomaly Score

After we finish the training, we produce anomaly scoring
functions for every node type and every edge type in the
graph. The scoring functions are computed by first performing
a forward propagation of the network with the input graph,
and then computing the individual node/edge reconstruction
error. Similar to other autoencoder-based models, as the model
optimizes an average reconstruction loss, it drives down the
loss of the common patterns found in the graph while being
relatively tolerant to cases that occur infrequently. Therefore,
at inference, normal patterns that commonly occur in the graph
can be easily reconstructed, i.e., having low reconstruction
error. On the other hand, anomalous patterns, which rarely
occur, suffer from high reconstruction errors.

We first define the edge scoring functions as the weighted
combination of the edge features’ MSE and the BCE of
predicting if an edge should exist in the graph. We then define
the scoring function for the nodes as the combination of the
reconstruction error of its node feature and aggregation of the
anomaly score of all edges connected to the node under all
relation types, i.e.:

score(r)e (e
(r)
i,j ) =

1
dr
∥xe(r)

i,j −x̂e(r)

i,j ∥22 − η log(Pr(e(r)i,j ∈ E))

score(t)v (vi) =
1
dt
∥xv

i − x̂v
i ∥22 + Agg

r∈R(vi)

e
(r)
i,j ∈M(r)(vi)

score(r)e (e
(r)
i,j ).

(13)

The aggregation function AGG could be MEAN or MAX,
depending on the need of the applications.

F. Scalability via Neighborhood Sampling

We design HeagNet with scalability in mind. The first
component of our scalability design is in the structure decoder,

where we do not need to store the full adjacency matrices
for representing the edges, unlike many previous models [6],
[7], [26], [39]. The size of adjacency matrices could be huge
for large industrial applications, particularly if they are stored
as dense matrices. The second component of our scalability
design is that we use neighborhood sampling during the
training process. Specifically, in each forward propagation,
we sample a subgraph from the full heterogeneous graph
and update the weights based on this subgraph. To create
the subgraph, we first sample a set of nodes from the
pre-specified node types, and then expand the subgraph
by iteratively sampling the neighborhood of the subgraph
multiple times. In addition, we also design layer-wise and
relation-wise sampling for the inference process, as we need
to compute anomaly scores for every single node and edge
in every single node/edge type in the graph.

V. EXPERIMENTS

We evaluate HeagNet to perform anomaly detection on
several publicly available datasets. We evaluate the models on
both node-level and edge-level anomaly detection. The input
graphs to the models are heterogeneous graphs with both node
features and edge features.

A. Experiment Setup

1) Datasets: In our experiments, we use several publicly
available datasets. The Telecom dataset [40] describes the
relationship between users and behaviors in a telecommuni-
cation network, containing four types of nodes: user, package,
app, cell, and three types of edges: user-buy-package, user-
use-app, user-live-cell. The Reddit dataset [41] contains user
interactions on the Reddit forum. The users and subreddits
are grouped into multiple clusters. Each cluster becomes a
node type. The edge types reflect the interaction between user
nodes and subreddits nodes. The edge features are created by
processing the text in interaction using the SentenceBERT lan-
guage model [42] to produce sentence embeddings. The node
features are created by aggregating edge features connected to
the node.

The Brightkite and Gowalla datasets [43] describe user
interactions on location-based social networks, Brightkite and
Gowalla. From the raw latitude and longitude location data, we
construct location nodes using GeoHash representation (level
6) of the coordinates [44], [45]. We cluster on the coordinates
to group the geohash nodes into 4 groups. The edge features
are created from the activity statistics of a user in a geohash
location. The features for the user node contain the activity
statistics of a user on the platform. Similarly, the features for



the geohash node contain the statistics of check-in activities
that occur inside the geohash.

Detailed information on the dataset properties, such as
the number of node/edge types, the number of nodes/edges,
the average node degree, and the average dimension of the
node/edge features, is available in Table I. Due to the size
of the Telecom dataset, we create two different versions of
the dataset: Telecom-Large containing the full-size dataset,
and Telecom-Small containing the sampled version. All of the
datasets contain 4-5 node types and 3-4 edge types. Every
node type and edge type have their own node/edge features.
In all of the datasets, we perform both node-level and edge-
level anomaly detection.

2) Baselines: As we are pioneering the task of simultane-
ous node and edge level anomaly detection on heterogeneous
graphs, there are no baseline available that are specifically
designed for the task. Therefore, for the purpose of our
experiment, we select baseline methods that do not necessarily
have the capability of performing the task, then adjust and
modify the methods or the datasets to simulate the necessary
requirement of node and edge level detection on heterogeneous
graph datasets. We believe that our experiments can still
provide some insight on the benefit of our proposed model,
as in real-world problems, practitioners may also face similar
challenges of either modifying available models to fit the
problem space, or modifying the problem space to fit the
available models.

AHEAD [26] is the closest method from our task, as it also
works on heterogeneous graphs. However, it only performs
node-level detection and can only accept node features. For
AHEAD, we use the node features in the heterogeneous graphs
and allow the model to produce node anomaly scores. The
anomaly scores for each edge are produced by taking the
average score of the two nodes connected to it. Isolation
Forest [46] is a classical tree-based model that is popular in
many industrial applications. As the model does not use graph
structure, we independently create separate models for each
node type and each edge type in the graph.

Additionally, we also select GNN models for node-level
anomaly detection homogeneous graphs, as the majority of
previous models work on this setup, despite the setup differs
a lot from our task. To simulate our anomaly detection task
on these homogeneous graph models, we convert the original
heterogeneous graphs to homogeneous graphs by removing
the node/edge type information. For the node attribute, we
make the dimension of the features equal by first concatenating
different features from different node types into a single big
block diagonal matrix, and then running principal component
analysis (PCA) to reduce the dimensionality of the matrix.
Similar to the AHEAD case, we let the model produce node
scores, and use the same technique for producing edge scores.
For the method selection, we select some of the most popular
methods in homogeneous graph anomaly detection, the DOM-
INANT [6], AnomalyDAE [7], and CONAD [14]. Therefore,
we compare seven models in our experiment: the tree based
Isolation Forest; the node-level heterogeneous graph model,

AHEAD; three node-level homogeneous graph models; as well
as two versions of our model, HeagNet-C and HeagNet-A.

3) Anomaly injection: As commonly done in many previ-
ous anomaly detection studies [6]–[20], we inject anomalies
into the heterogeneous attributed graphs, due to no ground
truth anomalies in the datasets. We specifically follow the
anomaly injection techniques described in [6], [25], with some
modifications for heterogeneous graph use cases. There are
two main components of the anomalies that we inject into
the graph: the topological structure and attribute anomalies.
The topological anomaly injection is done relation-wise. For
each relation (edge type), we randomly select a small number
of nodes and add a full or partial dense block involving
the selected nodes. Small dense structures in a graph are
typical anomalous substructures in which the interactions are
much more intense than average [6]. For injecting attribute
anomalies, we use two different techniques: the outside of
a confidence interval technique [47], [48], and the scaled
Gaussian noise technique [49]. We repeatedly inject the small
block anomalies with random selections of attribute anomalies
15-40 times, to simulate multiple anomaly occurrences in the
dataset, each with its own properties. All the edges and nodes
involved in the injected anomalies are labeled as anomalous.
The ratio of positive (anomalous) cases compared to all cases
is shown in the last two columns of Table I.

4) Implementation: We implement our method on top of
PyTorch [50] and PyTorch Geometric [51] frameworks. For the
AHEAD, we use the author’s implementation [26], whereas,
for the Isolation Forest, we use Scikit-Learn implementation.
For the homogeneous GNN baselines (DOMINANT, Anoma-
lyDAE, and CONAD), we use PyGOD [39] implementation
of the algorithms. Most of the experiments are conducted in
a single Linux machine from the AWS service with 16 vCPU
cores, 60 GB of RAM and an NVIDIA Tesla V100 GPU. The
exception is for the large datasets, where we use machines
with larger RAM, up to 120 GB.

5) Experiment details: In our experiments, we conduct 10
runs for each dataset, except for the Telecom-Large dataset
where we perform 5 runs due to its size. In each run, we
repeat the anomaly injection procedure to ensure that each
run has a different set of anomalies. We maintain the same
set of anomalies across our method and all the baselines to
ensure comparability of the results. During the experiment, we
set the parameter that balances feature and structure decoder,
η = 0.2, for our method. For AHEAD, DOMINANT, and
AnomalyDAE, we set the similar parameters as suggested in
their respective papers. To compute node anomaly scores in
our model, we employ the Max aggregation.

We conduct the experiment using 4 layers HeagNet (both
HeagNet-C and HeagNet-A), where we use 2 convolution
layers for the encoder, and 2 convolution layers for the feature
decoder. Each MLP used in the structure decoder also utilizes
2 dense layers. Similarly, the GNN-based baselines (DOM-
INANT, AnomalyDAE, CONAD, and AHEAD) also use 4
layers. To train HeagNet and all GNN baselines, we use Adam
optimizer. The final learning rate is decided after running a few



TABLE II: The mean (and stdev.) of the Average-AUCPR metrics over multiple experiment runs in each dataset.

Model IsoForest DOMINANT AnomalyDAE CONAD AHEAD HeagNet-C HeagNet-A
Dataset Node Edge Node Edge Node Edge Node Edge Node Edge Node Edge Node Edge

Telecom-
Small

0.924
(0.06)

0.556
(0.04)

0.428
(0.05)

0.196
(0.06)

0.132
(0.04)

0.036
(0.04)

0.427
(0.05)

0.196
(0.06)

0.942
(0.05)

0.597
(0.06)

0.970
(0.02)

0.715
(0.07)

0.965
(0.04)

0.711
(0.07)

Reddit 0.955
(0.05)

0.770
(0.17)

0.644
(0.15)

0.705
(0.08)

0.533
(0.10)

0.567
(0.07)

0.644
(0.15)

0.705
(0.08)

0.949
(0.05)

0.545
(0.09)

0.968
(0.03)

0.788
(0.17)

0.963
(0.02)

0.791
(0.15)

Brightkite 0.893
(0.07)

0.547
(0.15)

0.731
(0.12)

0.569
(0.05)

0.185
(0.04)

0.235
(0.09)

0.719
(0.12)

0.568
(0.05)

0.616
(0.11)

0.202
(0.09)

0.928
(0.05)

0.590
(0.12)

0.907
(0.05)

0.534
(0.10)

Gowalla 0.845
(0.05)

0.246
(0.06) OOM OOM OOM OOM OOM OOM OOM OOM 0.952

(0.03)
0.445
(0.09)

0.930
(0.03)

0.310
(0.07)

Telecom-
Large

0.945
(0.07)

0.493
(0.10) OOM OOM OOM OOM OOM OOM OOM OOM 0.964

(0.05)
0.642
(0.11)

0.961
(0.05)

0.616
(0.10)

experiments using different learning rates (i.e., 0.0001, 0.001,
0.003, 0.01, 0.03). For HeagNet and all GNN models, the
dimension of latent variables for every node is set to 64. The
training procedures use a batch size of 1024. For the Isolation
Forest model, we use the default parameters in Scikit-Learn
(e.g., the number of estimators, maximum sample in each
estimator, bootstrap, etc.). The random seed use in all experi-
ments and all models is 0. Lastly, in the structure decoder, we
sample the negative cases (non-connected node pairs) as many
as three times the number of edges (connected node pairs) in
the (subgraph) batch, for the edge prediction objective.

B. Experiment Results

1) Evaluation metric: Since different methods have dif-
ferent scoring systems, we employ a ranking-based metric
to evaluate the models. Specifically, we use the Area Under
the Precision-Recall Curve (AUCPR) as the evaluation metric.
Precision and recall provide better metrics compared to the
alternatives as most anomaly detection applications are highly
imbalanced, with the number of anomaly cases being far less
than the number of normal cases. Moreover, practitioners often
adjust the balance of precision and recall of a deployed model
to achieve the best business impact. A threshold-free metric
like AUCPR is suitable for anomaly detection evaluation in
such cases. Since the heterogeneous graphs in our datasets
contain many node and edge types, we report the Average-
AUCPR metric over all node/edge types in the graphs.

2) Overall results: The mean and standard deviation of
the Average-AUCPR over multiple runs for each dataset
are presented in Table II. The results are divided into two
sections: the node-level and edge-level Average-AUCPR.
Alongside the baselines, we provide the results of the
two versions of our model, HeagNet-C and HeagNet-A,
which differ in their inter-relation message passing scheme
as described in Section IV-B. HeagNet-C purely uses the
convolution operation, whereas HeagNet-A incorporates an
attention mechanism in its message passing scheme. The
bold numbers in the table indicate the best results, while the
underlined numbers indicate the second-best results.

As we can see from the table, HeagNet-C performs the best
in all datasets in node-level anomaly detection. HeagNet-C

also performs the best in nearly all datasets in edge-level
anomaly detection, except in the Reddit dataset where it
achieves the second-best result, slightly trailing HeagNet-A.
The attention version of our model, HeagNet-A, achieves
the best or the second-best results in nearly all datasets in
both node-level and edge-level anomaly detection, except in
Brightkite’s edge-level detection.

3) The effect of the attention mechanism: We observe that
the attention mechanism we introduce in HeagNet-A generally
does not improve the performance of our model compared
with the standard graph convolution. This is despite many
successful applications of attention models in heterogeneous
graphs under supervised and semi-supervised learning settings
[33]–[35], [52]. One reason could be the difference in the
learning objectives between supervised learning models and
unsupervised anomaly detection. In a supervised learning
setting, the attention mechanism helps to classify a target node
by increasing the influence of relevant information from the
neighbors and decreasing the influence of non-relevant ones
via the attention weights. In unsupervised anomaly detection,
the goal is to describe a node by its interactions with the
surrounding neighbors. If it cannot be easily described by
its surroundings (i.e., having high reconstruction error), it
is more likely to be anomalous. The attention mechanism
may be counterproductive in this setting, as it may hide the
anomalous signals from the surrounding neighbors as they
may be considered as irrelevant in reducing the reconstruction
error. This could make the anomaly score for the target node
small, despite the existence of the anomalous signal.

4) Node-level and edge-level detection results: In edge-
level anomaly detection, both HeagNet-C and HeagNet-A
significantly outperform all baselines by a large margin in
several datasets, particularly the Telecom-Small, Telecom-
Large, and Gowalla. They also maintain a relatively significant
lead over all GNN baselines in node-level anomaly detec-
tion. These results are expected, as our methods, HeagNet-C
and HeagNet-A, are the only methods specifically designed
for the task and capable to incorporate full information in
the graphs (both node and edge attributes, graph structure,
and node/edge type information). The other GNN baselines:
AHEAD, DOMINANT, AnomalyDAE, and CONAD are not



(a) Telecom-Small (b) Reddit (c) Brightkite

(d) Gowalla (e) Telecom-Large

Fig. 2: Precision-recall curves of the node-level and edge-level anomaly detection on each dataset.

able to use the edge features in their detection. In addition,
the homogeneous GNN models are not able to utilize the
node/edge type information in their detection. Since Isolation
Forest is a classical model, it cannot utilize the graph structure
information. However, it can utilize both node features and
edge features independently.

5) Comparison among the baselines: Among the GNN
baselines, AHEAD performs relatively better compared to
the homogeneous GNN models on node-level anomaly in
the Telecom-Small, Reddit, and Brightkite datasets, and on
edge-level anomaly in the Telecom-Small dataset. One reason
could be the diversity of feature information among different
node/edge types in the Telecom dataset, both in node and
edge features. Therefore, the AHEAD model, which can
utilize the node/edge type information, is able to perform
better than the homogeneous GNN models. In the Reddit
and Brightkite datasets, even though their node features are
relatively diverse among different node types, their edge
features are similar across different edge types. This may
prevent AHEAD from capitalizing the edge type information
to improve its performance. The attribute information is
crucial in anomaly detection. As a result, the Isolation Forest
method, which fully utilizes node and edge features, is able
to achieve reasonably good performance across different
datasets. However, as it is not able to utilize the graph
structure and information from neighboring nodes/edges, its
performance cannot surpass our models.

6) Precision-Recall Curve: In the previous results, we
reported the Average-AUCPR metrics to perform method
comparisons. The AUCPR metric provides a good overall look
at the prediction performance. However, when it comes to the
deployment of an anomaly detection system, practitioners may
want to see the precision vs. recall trade-off at a given thresh-
old. The precision-recall curve provides a tool to perform
trade-off analysis at multiple thresholding points. We present
the precision-recall curve on selected node and edge level
anomaly detections (selected node/edge types) for a single
experiment run in all datasets in Figures 2. In the plots, we
selected baselines that perform competitively to be included as
a line chart in the plot. As we can see from the figures, in most
of the cases in all of the datasets, HeagNet provides a better
precision-recall tradeoff compared to the baselines at most
thresholding points. In some cases, like in Telecom-Small,
Gowalla, and Telecom-Large, HeagNet provides significantly
better results compared to the baselines. These results further
confirm the benefits of HeagNet for node-level and edge-level
anomaly detection on heterogeneous graphs.

7) Scalability: From a scalability perspective, our models,
HeagNet-C and HeagNet-A, are capable of running on large
industrial datasets, such as in the Gowalla and Telecom-Large
datasets. The other GNN baselines, however, are not scalable
to this size. We have tried to run them on larger machines
without success due to out-of-memory (OOM) problems. One
of the main reasons is that in their implementation, they require



storing the full adjacency matrices in a dense matrix format.
This requirement is not feasible for large size graph data.

VI. CONCLUSIONS

We have proposed HeagNet, a graph neural network model
capable of simultaneously performing node-level and edge-
level anomaly detection in heterogeneous graphs with node
and edge attributes. Our model is the first GNN model capable
of performing the task in heterogeneous graphs. We demon-
strated the performance benefits over the baselines in detecting
anomalies in several public datasets. For future directions,
we plan to extend our investigation for anomaly detection on
heterogeneous temporal graphs.
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