

Efficient and Consistent Adversarial Bipartite Matching

Rizal Fathony^{*,#}, Sima Behpour^{*}, Xinhua Zhang, Brian D. Ziebart

*) equal contribution#) presenter

Bipartite Matching Tasks

Maximum weighted bipartite matching: $\max_{\pi \in \Pi} \psi(\pi) = \max_{\pi \in \Pi} \sum_{i} \psi_i(\pi_i)$

Machine learning task: Learn the appropriate weights $\psi_i(\cdot)$

Learning Bipartite Matching | Applications

Word alignment (Taskar et. al., 2005; Pado & Lapta, 2006; Mac-Cartney et. al., 2008)

Orrespondence between images (Belongie et. al., 2002; Dellaert et. al., 2003)

3 Learning to rank documents (Dwork et. al., 2001; Le & Smola, 2007)

Desiderata for a Predictor

Learning objective:

seek pairwise potentials that most compatible with training data

Challenge:

loss functions (e.g. Hamming loss): non-continuous & non convex

Desiderata for predictor:

Efficiency runtime: (low degree) polynomial time

Onsistency

must also minimize Hamming loss under ideal condition (given the true distribution and fully expressive model parameters)

Exponential Family Random Field Approach

(Petterson et. al., 2009; Volkovs & Zemel, 2012)

Probabilistic model:

where $M_{i,j} = \exp(\psi_i(j))$

Consistent?

produce Bayes optimal prediction in an ideal condition

C Efficient?

normalization term Z_{ψ} involves matrix permanent computation impractical even for modestly-size n = 20

Maximum Margin Approach

(Tsochantaridis et. al., 2005)

Max-margin model:

$$\min_{\psi} \mathbb{E}_{\pi \sim \tilde{P}} \left[\max_{\pi'} \left\{ loss(\pi, \pi') + \psi(\pi') \right\} - \psi(\pi) \right]$$

 \tilde{P} is the empirical distribution

Efficient?

polynomial algorithm for computing maximum violated constraint: (Hungarian algorithm)

X Consistent?

- based on Crammer & Singer multiclass SVM formulation
- is not consistent for distribution with no majority label (Liu, 2007)

Adversarial Bipartite Matching

(our approach)

Seek a predictor that robustly minimize Hamming loss against the worst-case permutation mixture probability

$$\begin{array}{c|c} \min_{\hat{P}(\hat{\pi}|x)} \max_{\check{P}(\check{\pi}|x)} \mathbb{E}_{x \sim \tilde{P}; \check{\pi}|x \sim \check{P}} \left[\operatorname{loss}(\hat{\pi}, \check{\pi}) \right] \\
\text{s.t.} \ \mathbb{E}_{x \sim \tilde{P}; \check{\pi}|x \sim \check{P}} \left[\sum_{i=1}^{n} \phi_i(x, \check{\pi}_i) \right] = \mathbb{E}_{(x,\pi) \sim \tilde{P}} \left[\sum_{i=1}^{n} \phi_i(x, \pi_i) \right]$$

Predictor:

- makes a probabilistic prediction $\hat{P}(\hat{\pi}|x)$
- aims to minimize the loss
- is pitted with an adversary instead of the empirical distribution

Adversary:

- makes a probabilistic prediction $\check{P}(\check{\pi}|x)$
- aims to maximize the loss
- constrained to select probability that match the statistics of empirical distribution (\tilde{P}) via moment matching on the features $\phi(x,\pi) = \sum_{i=1}^{n} \phi_i(x,\pi_i)$

Adversarial Bipartite Matching | Dual

Augmented Hamming loss matrix for n = 3 permutations

	$\check{\pi}=123$	$\check{\pi}=132$	$\check{\pi}=213$	$\check{\pi}=231$	$\check{\pi}=312$	$\check{\pi}=321$
$\hat{\pi}\!=\!123$	$0 + \delta_{123}$	$2 + \delta_{132}$	$2 + \delta_{213}$	$3 + \delta_{231}$	$3 + \delta_{312}$	$2 + \delta_{321}$
$\hat{\pi} = 132$	$2 + \delta_{123}$	$0 + \delta_{132}$	$3 + \delta_{213}$	$2 + \delta_{231}$	$2 + \delta_{312}$	$3 + \delta_{321}$
$\hat{\pi} = 213$	$2 + \delta_{123}$	$3 + \delta_{132}$	$0 + \delta_{213}$	$2 + \delta_{231}$	$2 + \delta_{312}$	$3 + \delta_{321}$
$\hat{\pi} = 231$	$3 + \delta_{123}$	$2 + \delta_{132}$	$2 + \delta_{213}$	$0 + \delta_{231}$	$3 + \delta_{312}$	$2 + \delta_{321}$
$\hat{\pi} = 312$	$3 + \delta_{123}$	$2 + \delta_{132}$	$2 + \delta_{213}$	$3 + \delta_{231}$	$0+\delta_{312}$	$2 + \delta_{321}$
$\hat{\pi} = 321$	$2 + \delta_{123}$	$3 + \delta_{132}$	$3 + \delta_{213}$	$2 + \delta_{231}$	$2 + \delta_{312}$	$0 + \delta_{321}$

size:

 $n! \times n!$

 $\frac{\text{Intractable}}{\text{for modestly-sized }n}$

Efficient Algorithms

Double Oracle Method (Constraint Generations)

2 Marginal Distribution Formulation

Double Oracle Method

Based on the observation:

equilibrium is usually supported by small number of permutations

Predictor's best - no formal polynomial bound is known

- runtime: cannot be characterized as polynomial

Marginal Distribution Formulation

Marginal Distribution Matrices:

Predictor

		1	2	3
D	$\hat{\pi}_1$	$p_{1,1}$	$p_{1,2}$	$p_{1,3}$
P =	$\hat{\pi}_2$	$p_{2,1}$	$p_{2,2}$	$p_{2,3}$
	$\hat{\pi}_3$	$p_{3,1}$	$p_{3,2}$	$p_{3,3}$
		4		~

$$p_{i,j} = \hat{P}(\hat{\pi}_i = j)$$

Adversary

		1	2	3
0	$\check{\pi}_1$	$q_{1,1}$	$q_{1,2}$	$q_{1,3}$
Q =	$\check{\pi}_2$	$q_{2,1}$	$q_{2,2}$	$q_{2,3}$
	$\check{\pi}_3$	$q_{3,1}$	$q_{3,2}$	$q_{3,3}$
		/	/	_ /

$$q_{i,j} = \check{P} \; (\check{\pi}_i = j)$$

Birkhoff – Von Neumann theorem:

convex polytope whose points are doubly stochastic matrix

$$\mathbf{P}\mathbf{1} = \mathbf{P}^{\top}\mathbf{1} = \mathbf{Q}\mathbf{1} = \mathbf{Q}^{\top}\mathbf{1} = \mathbf{1}$$

reduce the space of optimization: from $\mathcal{O}(n!)$ to $\mathcal{O}(n^2)$

Marginal Formulation | Optimization

Optimization:

add regularization and smoothing penalty

$$\max_{\mathbf{Q} \ge \mathbf{0}} \min_{\theta} \frac{1}{m} \sum_{i=1}^{m} \min_{\mathbf{P}_i \ge \mathbf{0}} \left[\langle \mathbf{Q}_i - \mathbf{Y}_i, \sum_k \theta_k \mathbf{X}_{i,k} \rangle - \langle \mathbf{P}_i, \mathbf{Q}_i \rangle + \frac{\mu}{2} \|\mathbf{P}_i\|_F^2 - \frac{\mu}{2} \|\mathbf{Q}_i\|_F^2 \right] + \frac{\lambda}{2} \|\theta\|_2^2$$

s.t. : $\mathbf{P}_i \mathbf{1} = \mathbf{P}_i^\top \mathbf{1} = \mathbf{Q}_i \mathbf{1} = \mathbf{Q}_i^\top \mathbf{1} = \mathbf{1}, \quad \forall i$

Techniques:

- Outer (Q): * projected Quasi-Newton (Schmidt, et.al., 2009) * projection to doubly-stochastic matrix
- Inner (θ) : closed-form solution
- Inner (P): projection to doubly-stochastic matrix
- Projection to doubly-stochastic matrix : ADMM

Consistency

Empirical Risk Perspective of Adversarial Bipartite Matching

$$\begin{split} \min_{\theta} \mathbb{E}_{\substack{x \sim P \\ \pi \mid x \sim \tilde{P}}} \left[AL_{f_{\theta}}^{\text{perm}}(x, \pi) \right] \\ \text{where: } AL_{f_{\theta}}^{\text{perm}}(x, \pi) \triangleq \min_{\hat{P}(\hat{\pi} \mid x)} \max_{\substack{\check{P}(\check{\pi} \mid x) \\ \check{\pi} \mid x \sim \check{P}}} \mathbb{E}_{\substack{\hat{\pi} \mid x \sim \hat{P} \\ \check{\pi} \mid x \sim \check{P}}} \left[\log(\hat{\pi}, \check{\pi}) + f_{\theta}(x, \check{\pi}) - f_{\theta}(x, \pi) \right] \end{split}$$

Consistency:

our method also minimize the Hamming loss in ideal case. arg-max of f is in the Bayes optimal responses

$$f^* \in \mathcal{F}^* \triangleq \underset{f}{\operatorname{argmin}} \mathbb{E}_{\pi|x \sim P} \left[AL_f^{\operatorname{perm}}(x, \pi) \right]$$

$$\Rightarrow \underset{\pi}{\operatorname{argmax}} f^*(x, \pi) \subseteq \Pi^{\diamond} \triangleq \underset{\pi}{\operatorname{argmin}} \mathbb{E}_{\bar{\pi}|x \sim P} [\operatorname{loss}(\pi, \bar{\pi})]$$

Experiment Setup

Application: Video Tracking

Table 3. Dataset properties				
DATASET	# Elements	# Examples		
TUD-CAMPUS	12	70		
TUD-STADTMITTE	16	178		
ETH-SUNNYDAY	18	353		
ETH-BAHNHOF	34	999		
ETH-PEDCROSS2	30	836		

Empirical runtime (until convergence)

Table 5. Running time (in seconds) of the model for various number of elements n with fixed number of samples (m = 50)

ELEMENTS	ADV MARG.	SSVM
12 1.0	1.96 1.0	0.22
16 I. 3	2.46 1.2	0.25
18 I.5	2.75 1.4	0.15
30 2.5	8.18 4.2	0.26
34 2.8	9.79 5.0	0.31
	12 1.0 16 1.3 18 1.5 30 2.5 34 2.8	ELEMENTSADV MARG.121.0161.32.461.2181.52.751.4302.58.184.2342.89.795.0

relative: 12=1.0 relative: 1.96=1.0

Adv. Marginal Form.: grows (roughly) quadratically in *n*

CRF: impractical even for n = 20(Petterson et. al., 2009)

Experiment Results

Table 4. The mean and standard deviation (in parenthesis) of the average accuracy (1 - the average Hamming loss) for the adversarial bipartite matching model compared with Structured-SVM.

Training/ Testing	Adv DO	Adv Marg.	SSVM	Adv DO #Perm.
Campus/ Stadtmitte	0.662 (0.09)	0.662 (0.08)	0.662 (0.08)	11.4
Stadtmitte/ Campus	0.672 (0.12)	0.667 (0.11)	0.660 (0.12)	7.4
Bahnhof/ Sunnyday	0.758 (0.12)	0.754 (0.10)	0.729 (0.15)	5.8
Pedcross2/ Sunnyday	0.760 (0.08)	0.750 (0.10)	0.736 (0.13)	8.2
Sunnyday/ Bahnhof	0.755 (0.20)	0.751 (0.18)	0.739 (0.20)	9.8
Pedcross2/ Bahnhof	0.760 (0.12)	0.763 (0.16)	0.731 (0.21)	10.8
BAHNHOF/ Pedcross2	0.718 (0.16)	0.714 (0.16)	0.701 (0.18)	8.5
SUNNYDAY/ PEDCROSS2	0.719 (0.18)	0.712 (0.17)	0.700 (0.18)	14.4

6 pairs of dataset significantly outperforms SSVM

2 pairs of dataset competitive with SSVM

Adv. Double Oracle: small number of permutations

Efficient? Consistent? Perform well?

Exponential Family Random Field

(Petterson et. al., 2009; Volkovs & Zemel, 2012)

Maximum Margin

(Tsochantaridis et. al., 2005)

Adversarial Bipartite Matching

(our approach)

THANK YOU