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Bipartite Matching Tasks
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A B

𝜋 = [4, 3, 1, 2]

Maximum weighted bipartite matching:

Machine learning task: Learn the appropriate weights 𝜓𝑖(⋅)



Learning Bipartite Matching | Applications
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Word alignment (Taskar et. al., 2005; Pado & Lapta, 2006; Mac-Cartney et. al., 2008)1

natürlich ist das     haus klein

of     course     the     house     is     small

Correspondence between images (Belongie et. al., 2002; Dellaert et. al., 2003)2

Learning to rank documents (Dwork et. al., 2001; Le & Smola, 2007)3
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Desiderata for a Predictor
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Efficiency1

Consistency2

runtime: (low degree) polynomial time

must also minimize Hamming loss under ideal condition
(given the true distribution and fully expressive model parameters)

Learning objective:

seek pairwise potentials that most compatible with training data

Challenge:

loss functions (e.g. Hamming loss):  non-continuous & non convex

Desiderata for predictor:



Exponential Family Random Field Approach
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Consistent?

Efficient?

(Petterson et. al., 2009;  Volkovs & Zemel, 2012)

Probabilistic model:

normalization term 𝑍𝜓 involves matrix permanent computation

#P-hard 
(Valiant, 1979)

impractical even for modestly-size 𝑛 = 20

produce Bayes optimal prediction in an ideal condition



Maximum Margin Approach
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Efficient?

Consistent?

(Tsochantaridis et. al., 2005)

Max-margin model:

- based on Crammer & Singer multiclass SVM formulation

- is not consistent for distribution with no majority label (Liu, 2007)

polynomial algorithm for computing maximum violated constraint:

(Hungarian algorithm)



Adversarial Bipartite Matching
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(our approach)

Predictor:

- makes a probabilistic prediction 𝑃(ො𝜋|𝑥)
- aims to minimize the loss

- is pitted with an adversary instead of the empirical distribution

Seek a predictor that robustly minimize Hamming loss 
against the worst-case permutation mixture probability

Adversary:

- makes a probabilistic prediction ෘ𝑃(�ු�|𝑥)
- aims to maximize the loss

- constrained to select probability that match the statistics of empirical distribution ( ෨𝑃)

via moment matching on the features 𝜙 𝑥, 𝜋 = σ𝑖=1
𝑛 𝜙𝑖(𝑥, 𝜋𝑖)



Adversarial Bipartite Matching | Dual
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Augmented Hamming loss matrix for 𝑛 = 3 permutations

Dual Formulation of the Adversarial Bipartite Matching
(methods of Lagrange multipliers, Von Neumann & Sion minimax duality)

where 𝜃 is the dual variable for moment matching constraints

size:

𝑛! × 𝑛!

Intractable
for modestly-sized 𝑛

Hamming loss 

Lagrangian

term



Efficient Algorithms
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Double Oracle Method (Constraint Generations)1

Marginal Distribution Formulation2



Double Oracle Method
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Based on the observation: 
equilibrium is usually supported by small number of permutations

ො𝜋=123

�ු�=123

0+𝛿123 Adversary’s best response: �ු�=213

�ු�=213

Predictor’s best response: ො𝜋=213

2+𝛿213

ො𝜋=213 2+𝛿123 0+𝛿213
Adversary’s best response: �ු�=312

�ු�=312

Predictor’s best response: ො𝜋=312

ො𝜋=312

3+𝛿213

2+𝛿213

3+𝛿123 2+𝛿213 0+𝛿213

Iterative procedure: 

- no formal polynomial bound is known

- runtime: cannot be characterized as polynomial



Marginal Distribution Formulation
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Marginal Distribution Matrices:

Predictor Adversary

𝐏 = 𝐐 =

𝑝𝑖,𝑗 = 𝑃(ො𝜋𝑖 = 𝑗) 𝑞𝑖,𝑗 = ෘ𝑃 ( 𝜋𝑖 = 𝑗)

Birkhoff –Von Neumann theorem:

123

132

213231

312

321
convex polytope whose points are

doubly stochastic matrix

reduce the space of optimization:

from 𝑂(𝑛!) to 𝑂(𝑛2)



Marginal Formulation | Optimization
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Optimization:

add regularization and smoothing penalty  

- Outer (Q):  * projected Quasi-Newton (Schmidt, et.al., 2009)

* projection to doubly-stochastic matrix

- Inner (𝜃): closed-form solution

- Inner (P): projection to doubly-stochastic matrix

- Projection to doubly-stochastic matrix :  ADMM

Techniques:



Consistency
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Empirical Risk Perspective of Adversarial Bipartite Matching

Consistency:
our method also minimize the Hamming loss in ideal case.

arg-max of 𝑓 is in the Bayes optimal responses



Experiment Setup
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Application:  Video Tracking

Empirical runtime (until convergence)

Adv. Marginal Form.:

grows (roughly) 

quadratically in 𝑛

CRF: impractical 

even for 𝑛 = 20
(Petterson et. al., 2009)



Experiment Results
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6 pairs of dataset

significantly 

outperforms SSVM

2 pairs of dataset

competitive with SSVM

Adv. Double Oracle:

small number of 

permutations



Conclusions
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Efficient? Perform well?

Exponential Family Random Field

Maximum Margin

Adversarial Bipartite Matching

(Petterson et. al., 2009;  

Volkovs & Zemel, 2012)

(Tsochantaridis et. al., 2005)

(our approach)

Consistent?

?

??



THANK YOU
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