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𝜋 = [4, 3, 1, 2]
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Learning Bipartite Matching Task

● Given: training data → each sample: a bipartite graph (𝑥) and a ground truth assignment (𝜋) 

● Task: learn weight function 𝜓𝑖 ⋅ that minimizes miss-assignment metric (e.g. Hamming loss)

Applications:

Word alignment (Taskar et. al., 2005; Pado & Lapta, 2006; Mac-Cartney et. al., 2008)

 Correspondence between images (Belongie et. al., 2002; Dellaert et. al., 2003)

 Learning to rank documents (Dwork et. al., 2001; Le & Smola, 2007)

Desiderata for a Predictor:

 Efficiency: learning & prediction runtime is in a (low degree) polynomial time

 Consistency: must also minimizes Hamming loss under ideal condition 

(given the true distribution and fully expressive model parameters)

 Exponential Family Random Field Approach (Petterson et. al., 2009;  Volkovs & Zemel, 2012)

Probabilistic model:

Consistent? Yes!

produce Bayes optimal prediction over the Hamming loss in an ideal condition

Efficient? No!

normalization term 𝑍𝜓 involves matrix permanent computation (a #P-hard problem)

Maximum Margin Approach  (Tsochantaridis et. al., 2005)

Max-margin model:

Efficient? Yes!

polynomial algorithm for computing the maximum violated constraint (Hungarian algorithm)

Consistent? No!

based on the CS multiclass SVM: not consistent for distributions with no majority label 

Formulation

● Our method seeks a predictor that robustly minimizes Hamming loss, against the worst-case

permutation mixture probability that is consistent with the statistics of the training data

● Predictor: - makes a probabilistic prediction 𝑃( ො𝜋|𝑥) and aims to minimize the loss

- is pitted with an adversary instead of the empirical distribution

● Adversary: - makes a probabilistic prediction ෘ𝑃(�ු�|𝑥) and aims to maximize the loss

- constrained to select probability that match the statistics of empirical distribution ( ෨𝑃)

via moment matching on the features 𝜙 𝑥, 𝜋 = σ𝑖=1
𝑛 𝜙𝑖(𝑥, 𝜋𝑖)

where 𝜃 is the dual variable for moment matching constraints

Augmented Hamming loss matrix for 𝑛 = 3 permutations:

size:

𝑛! × 𝑛!

Intractable
for modestly-sized 𝑛

 Double Oracle Method

● Based on the observation: equilibrium is usually supported by small number of permutations

● Iterative method: - start from a single permutation for each player

- alternately: * compute predictor’s (/adversary’s) strategy in the current game

* compute adversary’s (/predictor’s) best response, add to the game

- until no improvement in the game value

● Use the game solution to compute the gradient and perform gradient update

● No formal polynomial bound is known → the whole runtime cannot be characterized as polynomial 

Predictor Adversary

𝐏 = 𝐐 =

𝑝𝑖,𝑗 = 𝑃(ො𝜋𝑖 = 𝑗) 𝑞𝑖,𝑗 = ෘ𝑃 ( 𝜋𝑖 = 𝑗)
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Efficient? Perform well?

Exponential Family Random Field

Maximum Margin

Adversarial Bipartite Matching

(Petterson et. al., 2009;  Volkovs & Zemel, 2012)

(Tsochantaridis et. al., 2005)

(our approach)

Consistent?

?

??

6 pairs of datasets:

significantly
outperforms SSVM

2 pairs of datasets:

competitive with 
SSVM

Adv. Double Oracle:
small number of permutations in the equilibrium

Empirical runtime (until convergence)Experiment results

Adv. Marginal Formulation:
grows (roughly) quadratically 
in 𝑛

CRF: impractical 
even for 𝑛 = 20
(Petterson et. al., 2009)

Experiments | Video Tracking Tasks

● Predict object correspondence in 

two different frames

● Public benchmark datasets 

● 5 datasets in 2 groups (TUD and ETH)

● 48 different features for each pair of objects

● Train on one dataset, test on another dataset from the same group

Adversarial Bipartite Matching:

Empirical Risk Perspective of Adversarial Bipartite Matching

● Adversarial Bipartite Matching can be viewed as an ERM method with surrogate loss 𝐴𝐿𝑓
perm

● We show that minimizing 𝐴𝐿𝑓
perm

also minimizes the Hamming loss given true distribution, 

and 𝑓 is optimized over the set of all measurable functions on the input space (𝑥, 𝜋)

● The consistency result also holds when 𝑓 is an additive function over individual assignment 𝜋𝑖

Weighted Bipartite Matching

● Given: two sets of elements A and B with equal size, 

 weights between the elements in A and the elements in B 

● Task: find one-to-one mapping that maximize sum of potentials:

Dual Formulation

Marginal Distribution Formulation

● Reformulation: from permutation mixture distributions to marginal distributions:

● Birkhoff – Von Neumann theorem:

The convex hull of the set of permutations forms a convex polytope whose points are doubly 

stochastic matrices:

● Reduce the space of optimization from 𝑂(𝑛!) to 𝑂(𝑛2)

● Marginal optimization (after adding regularization and smoothing penalty):

● Techniques: - Outer (Q): projected Quasi-Newton with a projection to doubly-stochastic matrix

- Inner (𝜃): closed-form solution

- Inner (P): projection to doubly-stochastic matrix

- Projection to doubly-stochastic matrix :  ADMM


