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Bipartite Matching Task

Weighted Bipartite Matching
e Given: ® two sets of elements A and B with equal size,

Adversarial Bipartite Matching Consistency

Formulation Empirical Risk Perspective of Adversarial Bipartite Matching

e Our method seeks a predictor that robustly minimizes Hamming loss, against the worst-case

perm

e Adversarial Bipartite Matching can be viewed as an ERM method with surrogate loss ALf

@ weights between the elements in A and the elements in B permutation mixture probability that is consistent with the statistics of the training data
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also minimizes the Hamming loss given true distribution,

e Predictor: - makes a probabilistic prediction P(#|x) and aims to minimize the loss and f is optimized over the set of all measurable functions on the input space (x, )

- is pitted with an adversary instead of the empirical distribution ® The consistency result also holds when f is an additive function over individual assignment m;

e Adversary: - makes a probabilistic prediction P (7t|x) and aims to maximize the loss
- constrained to select probability that match the statistics of empirical distribution (P)

Experiments

via moment matching on the features ¢ (x, w) = X\t ¢d;(x, ;)

Dual Formulation
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Learning Bipartite Matching Task Experiments | Video Tracking Tasks

® Given: training data = each sample: a bipartite graph (x) and a ground truth assignment () ® Predict object correspondence in

ﬁ@nJa

where 0 is the dual variable for moment matching constraints two different frames

Augmented Hamming loss matrix for n = 3 permutations:

e Task: learn weight function y; () that minimizes miss-assighment metric (e.g. Hamming loss)
® Public benchmark datasets

Applications:

® Word alignment (Taskar et. al., 2005; Pado & Lapta, 2006; Mac-Cartney et. al., 2008)
@ Correspondence between images (Belongie et. al., 2002; Dellaert et. al., 2003)
® Learning to rank documents (Dwork et. al., 2001; Le & Smola, 2007)

Previous Methods and Shortcomings

Desiderata for a Predictor:
@ Efficiency: learning & prediction runtime is in a (low degree) polynomial time
@ Consistency: must also minimizes Hamming loss under ideal condition
(given the true distribution and fully expressive model parameters)

@® Exponential Family Random Field Approach (petterson et. al., 2009; Volkovs & Zemel, 2012)
Probabilistic model: 1

Py (m) = 7, &P (Z %bfz(?ffz))
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Q Consistent? Yes!
produce Bayes optimal prediction over the Hamming loss in an ideal condition

Q Efficient? No!
normalization term Zy, involves matrix permanent computation (a #P-hard problem)

@ Maximum Margin Approach (Tsochantaridis et. al., 2005)

Max-margin model:

minE,_p [max {loss(r, ') + ¥ (x')} — ()

P is the empirical distribution

Q Efficient? Yes!
polynomial algorithm for computing the maximum violated constraint (Hungarian algorithm)

Q Consistent? No!
based on the CS multiclass SVM: not consistent for distributions with no majority label

*equal contribution
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size:
n! x nl!

Intractable
for modestly-sized n

® 5 datasets in 2 groups (TUD and ETH)
e 48 different features for each pair of objects
® Train on one dataset, test on another dataset from the same group

Experiment results

Table 4. The mean and standard deviation (in parenthesis) of the
average accuracy (1 - the average Hamming loss) for the adver-
sarial bipartite matching model compared with Structured-SVM.

Empirical runtime (until convergence)

Table 5. Running time (in seconds) of the model for various num-
ber of elements n with fixed number of samples (m = 50)

Algorithms

@® Double Oracle Method
® Based on the observation: equilibrium is usually supported by small number of permutations

® |[terative method: - start from a single permutation for each player
- alternately: * compute predictor’s (/adversary’s) strategy in the current game
* compute adversary’s (/predictor’s) best response, add to the game
- until no improvement in the game value
e Use the game solution to compute the gradient and perform gradient update

e No formal polynomial bound is known = the whole runtime cannot be characterized as polynomial

@ Marginal Distribution Formulation

e Reformulation: from permutation mixture distributions to marginal distributions:

Predictor Adversary
1 2 3 | 2 3

T | P11 | P12 | P13 T | i | 12 | 1,3
T2 | P21 | P22 | P23 T2 | 2,1 | 92,2 | 42,3
T3 | P31 | P32 | P33 T3 | Q3,1 | 93,2 | 43,3

pij =P(@t; =)
® Birkhoff — Von Neumann theorem:
The convex hull of the set of permutations forms a convex polytope whose points are doubly
stochasticmatricess P1=P'1=Q1=Q'1=1

e Reduce the space of optimization from 0(n!) to 0(n?)

q.; =P (T =)

e Marginal optimization (after adding regularization and smoothing penalty):
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Q>0 0 m P,>0

e

1=1
st.:P1=P/1=Q1=Q/1=1, Vi
e Techniques: - Outer (Q): projected Quasi-Newton with a projection to doubly-stochastic matrix
- Inner (0): closed-form solution
- Inner (P): projection to doubly-stochastic matrix
- Projection to doubly-stochastic matrix : ADMM
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CAMPUS/
STADTMITTE

0.662
(0.09)

0.662
(0.08)

0.662
(0.08)

11.4

STADTMITTE/
CAMPUS

0.672
(0.12)

0.667
(0.11)

0.660
(0.12)

7.4

BAHNHOF/
SUNNYDAY

0.758
(0.12)

0.754
(0.10)

0.729
(0.15)

5.8

PEDCROSS2/
SUNNYDAY

0.760
(0.08)

0.750
(0.10)

0.736
(0.13)

8.2

SUNNYDAY/
BAHNHOF

0.755
(0.20)

0.751
(0.18)

0.739
(0.20)

9.8

PEDCROSS2/
BAHNHOF

0.760
(0.12)

0.763
(0.16)

0.731
(0.21)

BAHNHOF/
PEDCROSS?2

0.718
(0.16)

0.714
(0.16)

0.701
(0.18)

SUNNYDAY/
PEDCROSS2

0.719
(0.18)

0.712
(0.17)

0.700
(0.18)

Conclusions

Exponential Family Random Field

(Petterson et. al., 2009; Volkovs & Zemel, 2012)

Maximum Margin

(Tsochantaridis et. al., 2005)

Adversarial Bipartite Matching

(our approach)

Acknowledgement

This research was supported in part by NSF Grants RI-#1526379 and CAREER-#1652530.

DATASET

# ELEMENTS

ADV MARG. SSVM

CAMPUS
STADTMITTE
SUNNYDAY
PEDCROSS?2
BAHNHOF

12
16
18
30
34

1.96 0.22
2.46 0.25
2.75 0.15
8.18 0.26
9.79 0.31

Adv. Marginal Formulation:
grows (roughly) quadratically

inn

Adv. Double Oracle:
small number of permutations in the equilibrium

CRF: impractical

even forn = 20
(Petterson et. al., 2009)

Adversarial Bipartite Matching:

6 pairs of datasets:
significantly

outperforms SSVM

2 pairs of datasets:

competitive with
SSVM

Efficient?

Consistent?

X v/
v/ X
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Perform well?

v/
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