

Distributionally Robust Graphical Models

Rizal Fathony, Ashkan Rezaei, Mohammad Ali Bashiri, Xinhua Zhang, Brian D. Ziebart

AGM | Optimization

- Focus: tree-structured graphical models
- Matrix & vector notations:

$\min_{\theta_e,\theta_v} \mathbb{E}_{\mathbf{X},\mathbf{Y}\sim\tilde{P}} \max_{\mathbf{Q}\in\Delta} \min_{\mathbf{p}\in\Delta} \sum_{i}^{n} \left[\mathbf{p}_i \mathbf{L}_i (\mathbf{Q}_{pt(i);i}^{\mathrm{T}} \mathbf{1}) + \left\langle \mathbf{Q}_{pt(i);i} - \mathbf{Z}_{pt(i);i}, \sum_l \theta_e^{(l)} \mathbf{W}_{pt(i);i;l} \right\rangle$ $+ (\mathbf{Q}_{pt(i);i}^{\mathrm{T}} \mathbf{1} - \mathbf{z}_i)^{\mathrm{T}} (\sum_l \theta_v^{(l)} \mathbf{w}_{i;l}) \Big]$

subject to: $\mathbf{Q}_{pt(pt(i));pt(i)}^{\mathrm{T}} \mathbf{1} = \mathbf{Q}_{pt(i);i} \mathbf{1}, \forall i \in \{1, \dots, n\}$

Optimization Technique:	Runt
- Stochastic (sub)-gradient descent (outer opt. for $ heta_e$ and $ heta_ u$)	- Dep
- Dual decomposition (inner ${f Q}$ optimization)	- Add
- Discrete optimal transport solver (recovering ${f Q}$)	
- Closed-form solution (inner ${f p}$ optimization)	- Con
General Graphical Structure with Low Treewidth	

- Create a junction tree representation, then run the same optimization technique.
- Runtime: $O(nlwk^{(w+1)}\log k + nk^{2(w+1)})$, where: n: # cliques, w: treewidth of the graph

Experiments

- 1. Facial Emotion Intensity Prediction (Chain Structure, Labels with Ordinal Category)
- Predict emotion intensity of each picture in a video
- Each node: 3 class classification: *neutral* = 1< *increasing* = 2 < *apex* = 3
- Ordinal loss metrics: zero-one loss, absolute loss, and squared loss
- Weighted and unweighted. Weights reflect the focus of prediction.
- Results: Overall, AGM has advantages over SSVM & CRF in terms of the average loss and number of "indistinguishably best" performance

2. Semantic Role Labeling (Tree Structure)			
- Predict label of each node given known parse tree.	_	S	0
 Cost-sensitive loss metric is used reflect 	0 CC	O PRP	
the importance of each label			0
- CoNLL 2005 dataset		A	
- Result: AGM: competitive with SSVM & better than CRF			
 Incorporating loss metric in learning is important 			
Table 2: The average loss metrics for the semantic role labeling task.			
Loss metrics AGM CRF SSVM			
cost-sensitive loss 0.14 0.19 0.14			
	But	lt	is ur

Acknowledgement. This research was supported in part by National Science Foundation under Grant No. 1652530, and by the Future of Life Institute (futureoflife.org) FLI-RFP-Al1 program

COMPUTER SCIENCE

Table 1: The average loss metrics for the emotion intensity prediction. Bold numbers indicate the best or not significantly worse than the best results (Wilcoxon signed-rank test with $\alpha = 0.05$).

Loss metrics	AGM	CRF	SSVM
zero-one, unweighted	0.34	0.32	0.37
absolute, unweighted	0.33	0.34	0.40
squared, unweighted	0.38	0.38	0.40
zero-one, weighted	0.28	0.32	0.29
absolute, weighted	0.29	0.36	0.29
squared, weighted	0.36	0.40	0.33
average	0.33	0.35	0.35
# bold	4	2	2

