Overview

Ordinal Regression (also known as Ordinal Classification)

- Discrete class labels have an inherent order:
- (e.g., *poor*, *fair*, *good*, *very good*, and *excellent* labels) Ordinal loss depends on distance between predicted & actual label
- ► The absolute error, $|\hat{y} y|$, is a canonical ordinal regression loss

Existing Models

- Reduce the ordinal regression task to multiple subtasks by:
- Viewing the problem from the regression perspective
- \rightarrow learn a regression function and a set of thresholds; or
- Taking a classification perspective
- \rightarrow use tools from cost-sensitive classification
- Ordinal regression loss: non-convex and non-continuous \rightarrow Surrogate losses for ordinal regression need to be employed
- \rightarrow Constructed by transforming binary surrogate losses

Our Approach

- 1. Robust prediction: what predictor best minimizes absolute error in the worst case, given partial knowledge of the conditional label distribution?
- 2. Surrogate losses that realize this adversarial predictor for: (1) thresholded regression representation, or (2) multiclass representation
- 3. Enjoys the guarantee of Fisher consistency
- 4. Performs competitively with linear kernel, and significantly better than state-of-the-art models with Gaussian kernels

Related Works

Support Vector Machines for Ordinal Regression:

- Extend hinge loss to ordinal regression problems
- A. Threshold Methods (Sashua & Levin, '03; Chu & Keerthi, '05; Rennie & Srebro, '05) All Threshold (also called SVORIM):
 - $\mathsf{IOSS}_{\mathsf{AT}}(\hat{f}, y) = \sum_{k=1}^{y-1} \delta(-(\theta_k \hat{f})) + \sum_{k=y}^{|\mathcal{Y}|} \delta(\theta_k \hat{f})$
- 2. Immediate Threshold (also called SVOREX):
- $\mathsf{IOSS}_{\mathsf{IT}}(\hat{f}, y) = \delta(-(\theta_{y-1} \hat{f})) + \delta(\theta_y \hat{f})$
- B. Reduction Framework (Li & Lin, 2007) • Create $|\mathcal{Y}| - 1$ weighted extended samples for each training sample
 - Run weighted binary classification on the extended samples
- C. Cost Sensitive Classification Methods (Lin, 2008, 201; Tu & Lin, 2010) CS-OVA, CS-OVO, CS-OSR (one sided regression)

Adversarial Prediction Games (Asif et al. 2015)

- Two player zero-sum games:
- 1) Adversarial player: controls conditional label distribution $\check{P}(\check{y}|\mathbf{x})$ \rightarrow must approximate training data, but otherwise maximize expected loss
- 2) Estimator player: controls $\hat{P}(\hat{y}|\mathbf{x})$ and seeks to minimize expected loss
- ► Formulation:
 - $\min_{\hat{P}(\hat{y}|\mathbf{x})} \max_{\check{P}(\check{y}|\mathbf{x})} \mathbb{E}_{\mathbf{X} \sim P; \check{Y}|\mathbf{X} \sim \hat{P}; \check{Y}|\mathbf{X} \sim \check{P}} \left[\mathsf{loss}(\hat{Y}, \check{Y}) \right] \text{ such that: } \mathbb{E}_{\mathbf{X} \sim P; \check{Y}|\mathbf{X} \sim \check{P}} [\phi(\mathbf{X}, \check{Y})] = \tilde{\phi}.$
- Feature moments $\tilde{\phi} = \mathbb{E}_{\mathbf{X}, Y \sim \tilde{P}}[\phi(\mathbf{X}, Y)]$, are measured from training data
- For ordinal regression, it reduces to an optimization convex in θ : zero-sum game $f_1 - f_{y_i} \cdots f_{|\mathcal{Y}|} - f_{y_i} + |\mathcal{Y}| - 1$ $f_1 - f_{y_i} + 1 \cdots f_{|\mathcal{Y}|} - f_{y_i} + |\mathcal{Y}| - 2$

$\min_{\mathbf{w}} \sum \max_{\hat{\mathbf{p}}} \min_{\hat{\mathbf{p}}} \hat{\mathbf{p}}_{\mathbf{x}_i}^T \mathbf{L}_{\mathbf{x}_i,\mathbf{w}}^T \hat{\mathbf{p}}_{\mathbf{x}_i}; \ \mathbf{L}_{\mathbf{x}_i,\mathbf{w}}^{\prime} =$	$J_1 - J_{y_i} + 1$	$\cdots J_{ \mathcal{Y} }$
$\mathbf{W} \underbrace{\check{\mathbf{p}}_{\mathbf{x}_i}}_{\mathbf{\hat{p}}_{\mathbf{x}_i}} \mathbf{P}_{\mathbf{x}_i} \underbrace{\mathbf{P}}_{\mathbf{x}_i} \mathbf{X}_i, \mathbf{W} \mathbf{P}_{\mathbf{x}_i}, \mathbf{W} \mathbf{X}_i, \mathbf{W}$:	•••
i i i i i i i i i i i i i i i i i i i	$ f_1 - f_{y_i} + \mathcal{Y} - 1$	1
convex optimization of w		

where: w is the Lagrangian model parameter, and $f_i = \mathbf{w} \cdot \phi(\mathbf{x}_i, j)$ Inner zero-sum game can be solved using a linear program

Rizal Fathony, Mohammad Bashiri, and Brian D. Ziebart

Adversarial Surrogate Losses for Ordinal Regression

Department of Computer Science, University of Illinois at Chicago

 $f_{|\mathcal{Y}|} - f_{y_i}$

Adversarial Surrogate Losses

Theorem An adversarial ordinal regression predictor is obtained by choosing parameters w that minimize the empirical risk of the surrogate loss function:

 $AL_{\mathbf{w}}^{ord}(\mathbf{x}_{i}, y_{i}) = \max_{j,l \in \{1,...,|\mathcal{Y}|\}} \frac{f_{j} + f_{l} + j - l}{2} - f_{y_{i}} = 1$ where $f_j = \mathbf{w} \cdot \phi(\mathbf{x}_i, j)$ for all $j \in \{1, \dots, |\mathcal{Y}|\}$ Feature representations:

$$\phi_{th}(\mathbf{x}, y) = \begin{pmatrix} y\mathbf{x} \\ I(y \le 1) \\ I(y \le 2) \\ \mathbf{i} \\ I(y \le |\mathcal{Y}| - 1) \end{pmatrix}; \text{ and } \phi_{mc}(\mathbf{x}, y) = \begin{pmatrix} I(y = 1)\mathbf{x} \\ I(y = 2)\mathbf{x} \\ I(y = 3)\mathbf{x} \\ \mathbf{i} \\ I(y = |\mathcal{Y}|)\mathbf{x} \end{pmatrix}$$

Thresholded regression surrogate loss: AL^{ord-th}

$$\begin{aligned} \mathsf{AL}^{\mathsf{ord-th}}(\mathbf{x}_i, y_i) &= \max_{j} \frac{j(\mathbf{w} \cdot \mathbf{x}_i + 1) + \sum_{k \ge j} \theta_k}{2} \\ &+ \max_{l} \frac{l(\mathbf{w} \cdot \mathbf{x}_i - 1) + \sum_{k \ge l} \theta_k}{2} - y_i \mathbf{w} \cdot \mathbf{x}_i - \sum_{k \ge y_i} \theta_k. \end{aligned}$$

AL^{ord-th} is based on averaging the thresholded label predictions for potentials $\mathbf{w} \cdot \mathbf{x}_i + 1$ and $\mathbf{w} \cdot \mathbf{x}_i - 1$

Multiclass ordinal surrogate loss: AL^{ord-mc}

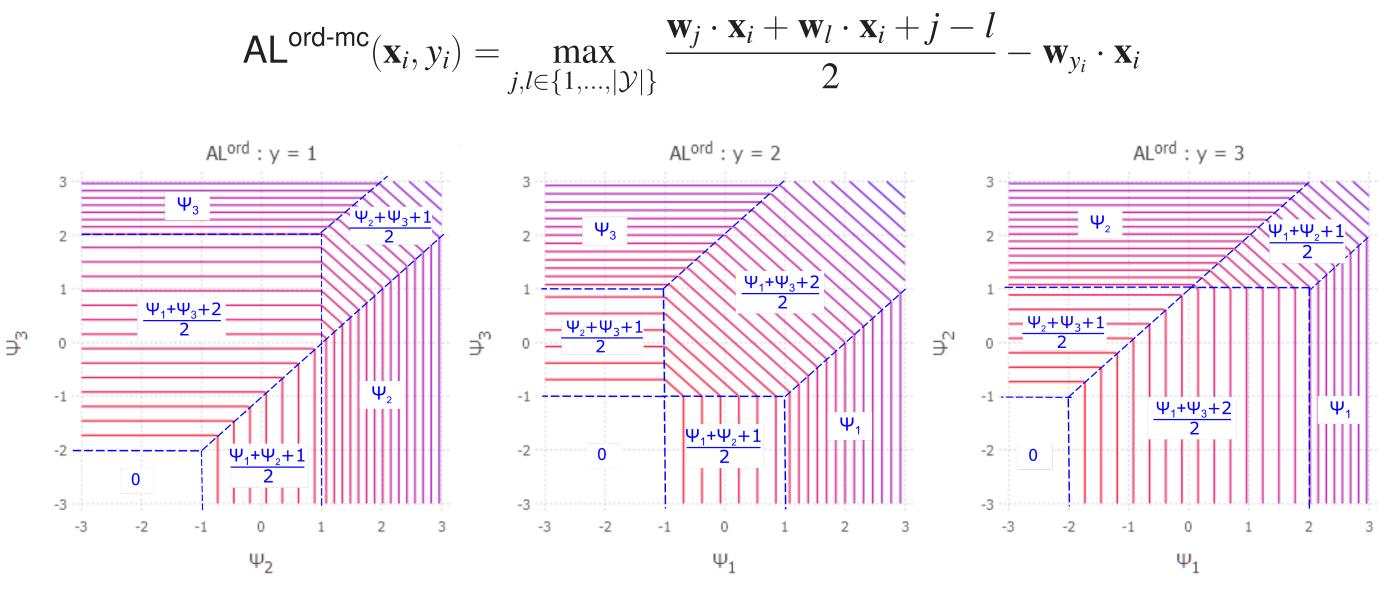


Figure: Loss function contour plots of AL^{ord-mc} over the space of potential differences $\psi_i \triangleq f_i - f_{y_i}$ for three classes prediction when the true label is $y_i = 1$, $y_i = 2$, and $y_i = 3$

Fisher Consistency

- Minimizing a Fisher consistent loss yields the Bayes optimal decision boundary given the true distribution, P(x, y)
- Ordinal Regression: it requires $\operatorname{argmax}_{i} f_{i}^{*}(\mathbf{x}) \subseteq \operatorname{argmin}_{i} \sum_{v} P_{v} | i v |$, where $P_j \triangleq P(Y = j | \mathbf{x})$ and \mathbf{f}^* is the minimizer of $\mathbb{E}[loss_{\mathbf{f}}(\mathbf{X}, Y) | \mathbf{X} = \mathbf{x}]$
- ► The minimizer of $\mathbb{E} \left| \mathsf{AL}_{\mathbf{f}}^{\mathsf{ord}}(\mathbf{X}, Y) | \mathbf{X} = \mathbf{x} \right|$ satisfies the *loss reflective* property, i.e., it complements the absolute error
- Examples: $[0, -1, -2]^T$, $[-1, 0, -1]^T$ and $[-2, -1, 0]^T$ for three-class problems, and [-3, -2, -1, 0, -1] for five-class problems
- Minimizing over f that satisfy the loss reflective property is equivalent to finding the Bayes optimal response

Rizal Fathony, Mohammad Bashiri, and Brian D. Ziebart {rfatho2, mbashi4, bziebart}@uic.edu

$$\max_{j} \frac{f_{j} + j}{2} + \max_{l} \frac{f_{l} - l}{2} - f_{y_{i}},$$

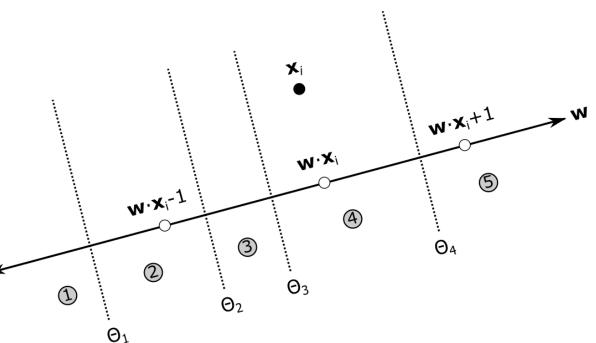


Figure: Surrogate loss calculation for AL^{ord-th}

Primal Optimization using Stochastic Averaged Gradient (SAG) SAG (Schmidt et.al, 2013, 2015) uses the gradient of each example from the last iteration it was selected to take a step Naïve implementation SAG requires gradient storage ► For AL^{ord}, storage requirement can be drastically reduced by just storing a pair of number, $(j^*, l^*) = \operatorname{argmax}_{i,l \in \{1, \dots, |\mathcal{Y}|\}} \frac{f_j + f_l + j - l}{2}$, rather than the gradient for each sample **Dual Optimization using Quadratic Programming (QP)** Constrained QP of AL^{ord} plus L2 regularization $\min_{\theta} \frac{1}{2} \|\theta\|^2 + \frac{C}{2} \sum_{i=1}^n \xi_i + \frac{C}{2} \sum_{i=1}^n \delta_i$ subject to: $\xi_i \ge \theta \cdot \phi(\mathbf{x}_i, j) - \theta \cdot \phi(\mathbf{x}_i, y_i) + j$ $\forall i \in \{1, \dots, n\}; j \in \{1, \dots, |\mathcal{Y}|\}$

- $\delta_i \geq \theta \cdot \phi(\mathbf{x}_i, j) \theta \cdot \phi(\mathbf{x}_i, y_i) j$
- Dual QP formulation

$$\max_{\alpha,\beta} \sum_{i,j} j(\alpha_{i,j} - \beta_{i,j}) - \frac{1}{2} \sum_{i,j,k,l} j(\alpha_{i,$$

- Dual QP only depends on dot products

Experiments and Results

Table: The average of the mean absolute error (MAE) for each model. Bold numbers in each case indicate that the result is the best or not significantly worse than the best.

Dataset	Threshold-based models			Multiclass-based models					
Dalasel	AL ^{ord-th}	RED^{th}	AT	IT	AL ^{ord-mc}	RED ^{mc}	CSOSR	CSOVO	CSOVA
diabetes	0.696	0.715	0.731	0.827	0.629	0.700	0.715	0.738	0.762
pyrimidines	0.654	0.678	0.615	0.626	0.509	0.565	0.520	0.576	0.526
triazines	0.607	0.683	0.649	0.654	0.670	0.673	0.677	0.738	0.732
wisconsin	1.077	1.067	1.097	1.175	1.136	1.141	1.208	1.275	1.338
machinecpu	0.449	0.456	0.458	0.467	0.518	0.515	0.646	0.602	0.702
autompg	0.551	0.550	0.550	0.617	0.599	0.602	0.741	0.598	0.731
boston	0.316	0.304	0.306	0.298	0.311	0.311	0.353	0.294	0.363
stocks	0.324	0.317	0.315	0.324	0.168	0.175	0.204	0.147	0.213
abalone	0.551	0.547	0.546	0.571	0.521	0.520	0.545	0.558	0.556
bank	0.461	0.460	0.461	0.461	0.445	0.446	0.732	0.448	0.989
computer	0.640	0.635	0.633	0.683	0.625	0.624	0.889	0.649	1.055
calhousing	1.190	1.183	1.182	1.225	1.164	1.144	1.237	1.202	1.601
average	0.626	0.633	0.629	0.661	0.613	0.618	0.706	0.652	0.797
# bold	5	5	4	2	5	5	2	2	1

- Experiments with Line Competitive performance compared to baselines and multiclass represer
- AL^{ord} has a slight advar average accuracy
- Experiments with Gau
- Provides access to mu spaces AL^{ord-th} is significantly b
- SVORIM (all-threshold SVOREX (immediate-th

Acknowledgments: This research was supported as part of the Future of Life Institute (futureoflife.org) FLI-RFP-Al1 program, grant#2016-158710 and by NSF grant RI-#1526379.

Optimization

UC

 $\forall i \in \{1, \dots, n\}; j \in \{1, \dots, |\mathcal{Y}|\}$

COMPUTER SCIENCE

 $\sum_{k} (\alpha_{i,j} + \beta_{i,j}) (\alpha_{k,l} + \beta_{k,l}) (\phi(\mathbf{x}_i, j) - \phi(\mathbf{x}_i, y_i)) \cdot (\phi(\mathbf{x}_k, l) - \phi(\mathbf{x}_l, y_k))$

 $\sum \alpha_{i,j} = \frac{C}{2}; \sum \beta_{i,j} = \frac{C}{2}; i, k \in \{1, \dots, n\}; j, l \in \{1, \dots, |\mathcal{Y}|\}$

Enables efficient rich feature expansion using kernel trick

near Kernel	Table: The average of MAE for models with Gaussian kernel.					
s on thresholded	Dataset	AL ^{ord-th}	SVORIM	SVOREX		
entations	diabetes	0.696	0.665	0688		
antage on the	pyrimidines	0.478	0.539	0.550		
	triazines	0.609	0.612	0.604		
aussian Kernel uch richer feature	wisconsin	1.090	1.113	1.049		
	machinecpu	0.452	0.652	0.628		
	autompg	0.529	0.589	0.593		
	boston	0.278	0.324	0.316		
better than	stocks	0.103	0.099	0.100		
d model) and threshold model)	average	0.531	0.574	0.566		
	# bold	7	3	4		

Email: {rfatho2, mbashi4, bziebart}@uic.edu