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Overview
Ordinal Regression (also known as Ordinal Classification)
I Discrete class labels have an inherent order:

(e.g., poor, fair, good, very good, and excellent labels)
I Ordinal loss depends on distance between predicted & actual label
I The absolute error, |ŷ− y|, is a canonical ordinal regression loss

Existing Models
I Reduce the ordinal regression task to multiple subtasks by:

I Viewing the problem from the regression perspective
→ learn a regression function and a set of thresholds; or

I Taking a classification perspective
→ use tools from cost-sensitive classification

I Ordinal regression loss: non-convex and non-continuous
→ Surrogate losses for ordinal regression need to be employed
→ Constructed by transforming binary surrogate losses

Our Approach
1. Robust prediction: what predictor best minimizes absolute error in

the worst case, given partial knowledge of the conditional label distribution?
2. Surrogate losses that realize this adversarial predictor for:

(1) thresholded regression representation, or
(2) multiclass representation

3. Enjoys the guarantee of Fisher consistency
4. Performs competitively with linear kernel, and significantly better

than state-of-the-art models with Gaussian kernels

Related Works
Support Vector Machines for Ordinal Regression:
I Extend hinge loss to ordinal regression problems

A. Threshold Methods (Sashua & Levin, ‘03; Chu & Keerthi, ‘05; Rennie & Srebro, ‘05)
1. All Threshold (also called SVORIM):

lossAT(f̂ , y) =
∑y−1

k=1 δ(−(θk − f̂ )) +
∑|Y|

k=y δ(θk − f̂ )

2. Immediate Threshold (also called SVOREX):
lossIT(f̂ , y) = δ(−(θy−1 − f̂ )) + δ(θy − f̂ )

B. Reduction Framework (Li & Lin, 2007)
I Create |Y| − 1 weighted extended samples for each training sample
I Run weighted binary classification on the extended samples

C. Cost Sensitive Classification Methods (Lin, 2008, 201; Tu & Lin, 2010)
I CS-OVA, CS-OVO, CS-OSR (one sided regression)

Adversarial Prediction Games (Asif et al. 2015)
I Two player zero-sum games:

1) Adversarial player: controls conditional label distribution P̌(y̌|x)
→ must approximate training data, but otherwise maximize expected loss

2) Estimator player: controls P̂(ŷ|x) and seeks to minimize expected loss
I Formulation:

min
P̂(ŷ|x)

max
P̌(y̌|x)

EX∼P;Ŷ|X∼P̂;Y̌|X∼P̌

[
loss(Ŷ, Y̌)

]
such that: EX∼P;Y̌|X∼P̌[φ(X, Y̌)] = φ̃.

I Feature moments φ̃ = EX,Y∼P̃[φ(X,Y)], are measured from training data

I For ordinal regression, it reduces to an optimization convex in θ:

min
w

∑
i

zero-sum game︷ ︸︸ ︷
max

p̌xi

min
p̂xi

p̂T
xi

L′xi,wp̌xi︸ ︷︷ ︸
convex optimization of w

; L′xi,w=


f1 − fyi · · · f|Y| − fyi + |Y| − 1

f1 − fyi + 1 · · · f|Y| − fyi + |Y| − 2
... . . . ...

f1 − fyi + |Y| − 1 · · · f|Y| − fyi


where: w is the Lagrangian model parameter, and fj = w · φ(xi, j)

I Inner zero-sum game can be solved using a linear program

Adversarial Surrogate Losses
Theorem An adversarial ordinal regression predictor is obtained by
choosing parameters w that minimize the empirical risk of the surrogate
loss function:

ALord
w (xi, yi) = max

j,l∈{1,...,|Y|}

fj + fl + j− l
2

− fyi = max
j

fj + j
2

+ max
l

fl − l
2
− fyi,

where fj = w · φ(xi, j) for all j ∈ {1, . . . , |Y|}
Feature representations:

φth(x, y) =


yx

I(y ≤ 1)
I(y ≤ 2)

...
I(y ≤ |Y| − 1)

 ; and φmc(x, y) =


I(y = 1)x
I(y = 2)x
I(y = 3)x

...
I(y = |Y|)x


Thresholded regression surrogate loss: ALord-th

ALord-th(xi, yi) = max
j

j(w · xi + 1) +
∑

k≥j θk

2

+ max
l

l(w · xi − 1) +
∑

k≥l θk

2
− yiw · xi −

∑
k≥yi

θk.

I ALord-th is based on averaging
the thresholded label
predictions for potentials
w · xi + 1 and w · xi − 1

Figure: Surrogate loss calculation for
ALord-th

Multiclass ordinal surrogate loss: ALord-mc

ALord-mc(xi, yi) = max
j,l∈{1,...,|Y|}

wj · xi + wl · xi + j− l
2

− wyi · xi

Figure: Loss function contour plots of ALord-mc over the space of potential differences
ψj , fj − fyi for three classes prediction when the true label is yi = 1, yi = 2, and yi = 3

Fisher Consistency
I Minimizing a Fisher consistent loss yields the Bayes optimal

decision boundary given the true distribution, P(x, y)

I Ordinal Regression: it requires argmaxj f ∗j (x) ⊆ argminj
∑

y Py |j− y|,
where Pj , P(Y = j|x) and f∗ is the minimizer of E [lossf(X,Y)|X = x]

I The minimizer of E
[
ALord

f (X,Y)|X = x
]

satisfies the loss reflective
property, i.e., it complements the absolute error

I Examples: [0,−1,−2]T, [−1, 0,−1]T and [−2,−1, 0]T for three-class
problems, and [−3,−2,−1, 0,−1] for five-class problems

I Minimizing over f that satisfy the loss reflective property is
equivalent to finding the Bayes optimal response

Optimization
Primal Optimization using Stochastic Averaged Gradient (SAG)
I SAG (Schmidt et.al, 2013, 2015) uses the gradient of each

example from the last iteration it was selected to take a step
I Naı̈ve implementation SAG requires gradient storage
I For ALord, storage requirement can be drastically reduced by just

storing a pair of number, (j∗, l∗) = argmaxj,l∈{1,...,|Y|}
fj+fl+j−l

2 , rather
than the gradient for each sample

Dual Optimization using Quadratic Programming (QP)
I Constrained QP of ALord plus L2 regularization

min
θ

1
2
‖θ‖2 +

C
2

n∑
i=1

ξi +
C
2

n∑
i=1

δi

subject to: ξi ≥ θ · φ(xi, j)− θ · φ(xi, yi) + j ∀i ∈ {1, . . . n}; j ∈ {1, . . . , |Y|}
δi ≥ θ · φ(xi, j)− θ · φ(xi, yi)− j ∀i ∈ {1, . . . n}; j ∈ {1, . . . , |Y|}

I Dual QP formulation
max
α,β

∑
i,j

j(αi,j − βi,j)−
1
2

∑
i,j,k,l

(αi,j + βi,j) (αk,l + βk,l) (φ(xi, j)− φ(xi, yi)) · (φ(xk, l)− φ(xl, yk))

subject to:αi,j ≥ 0; βi,j ≥ 0;
∑

j

αi,j = C
2 ;
∑

j

βi,j = C
2 ; i, k ∈ {1, . . . , n}; j, l ∈ {1, . . . , |Y|}

I Dual QP only depends on dot products
I Enables efficient rich feature expansion using kernel trick

Experiments and Results
Table: The average of the mean absolute error (MAE) for each model. Bold numbers
in each case indicate that the result is the best or not significantly worse than the best.

Dataset
Threshold-based models Multiclass-based models

ALord-th REDth AT IT ALord-mc REDmc CSOSR CSOVO CSOVA
diabetes 0.696 0.715 0.731 0.827 0.629 0.700 0.715 0.738 0.762
pyrimidines 0.654 0.678 0.615 0.626 0.509 0.565 0.520 0.576 0.526
triazines 0.607 0.683 0.649 0.654 0.670 0.673 0.677 0.738 0.732
wisconsin 1.077 1.067 1.097 1.175 1.136 1.141 1.208 1.275 1.338
machinecpu 0.449 0.456 0.458 0.467 0.518 0.515 0.646 0.602 0.702
autompg 0.551 0.550 0.550 0.617 0.599 0.602 0.741 0.598 0.731
boston 0.316 0.304 0.306 0.298 0.311 0.311 0.353 0.294 0.363
stocks 0.324 0.317 0.315 0.324 0.168 0.175 0.204 0.147 0.213
abalone 0.551 0.547 0.546 0.571 0.521 0.520 0.545 0.558 0.556
bank 0.461 0.460 0.461 0.461 0.445 0.446 0.732 0.448 0.989
computer 0.640 0.635 0.633 0.683 0.625 0.624 0.889 0.649 1.055
calhousing 1.190 1.183 1.182 1.225 1.164 1.144 1.237 1.202 1.601
average 0.626 0.633 0.629 0.661 0.613 0.618 0.706 0.652 0.797
# bold 5 5 4 2 5 5 2 2 1

I Experiments with Linear Kernel
I Competitive performance of ALord

compared to baselines on thresholded
and multiclass representations

I ALord has a slight advantage on the
average accuracy

I Experiments with Gaussian Kernel
I Provides access to much richer feature

spaces
I ALord-th is significantly better than

SVORIM (all-threshold model) and
SVOREX (immediate-threshold model)

Table: The average of MAE for
models with Gaussian kernel.
Dataset ALord-th SVORIM SVOREX
diabetes 0.696 0.665 0688
pyrimidines 0.478 0.539 0.550
triazines 0.609 0.612 0.604
wisconsin 1.090 1.113 1.049
machinecpu 0.452 0.652 0.628
autompg 0.529 0.589 0.593
boston 0.278 0.324 0.316
stocks 0.103 0.099 0.100
average 0.531 0.574 0.566
# bold 7 3 4
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