
Adversarial Multiclass Classification: A Risk Minimization Perspective
Rizal Fathony, Anqi Liu, Kaiser Asif, and Brian D. Ziebart
{rfatho2, aliu33, kasif2, bziebart}@uic.edu

Department of Computer Science, University of Illinois at Chicago

Overview
Empirical Risk Minimization (ERM)
I Goal of classification: minimize classification error - zero-one loss
I Minimize zero-one loss over training data: NP-hard in general

Support Vector Machine (SVM)
I Optimize hinge loss (a convex surrogate loss) over training data
I Binary SVM: Fisher consistent and universally consistent
I Generalizing SVM to multiclass case is challenging:

loses consistency guarantees or does not perform well in practice
Adversarial Classification
I Optimizes exact loss (zero-one) and approximates training data
I Promising empirical results for cost-sensitive and multivariate

losses (Asif et al. 2015, Wang et al. 2015)
Our Approach:
1. Recast zero-one adversarial classification from ERM perspective

by analyzing the Nash equilibrium and define a new multiclass loss
2. Fill the long-standing gap in ERM methods by simultaneously:

(1) Guaranteeing Fisher consistency and universal consistency
(2) Enabling computational efficiency via kernel trick and dual sparsity
(3) Providing competitive performance in practice

3. Significantly improve computational efficiency
→ no game solving using linear programming is required

Related Work
Multiclass Support Vector Machine
I Three main formulations:

1) WW by Weston and Watkins (1999):
lossWW(xi, yi) =

∑
j 6=yi

[1− (fyi(xi)− fj(xi))]+
2) CS by Crammer and Singer (2002):

lossCS(xi, yi) = maxj6=yi [1− (fyi(xi)− fj(xi))]+
3) LLW by Lee, Lin and Wahba (2004):

lossLLW(xi, yi) =
∑

j6=yi
[1 + fj(xi)]+, subject to

∑
j fj(xi) = 0

I WW and CS: relative margin, LLW: absolute margin
I Only LLW is Fisher consistent and universally consistent. (Tewari

and Bartlett 2004, Liu 2007)
I LLW’s use of absolute margin→ often performs poorly in datasets

with low dimensional features. (Doğan et al. 2016)

Adversarial Prediction Games (Asif et al. 2015)
I Two player zero-sum games:

1) Adversarial player: controls conditional label distribution P̌(y̌|x)
→ must approximate training data, but otherwise maximize expected loss

2) Estimator player: controls P̂(ŷ|x) and seeks to minimize expected loss
I Formulation:

min
P̂

max
P̌:EP(x)P̌(y̌|x)[φ(X,Y̌)]=φ̃

EP̃(x)P̂(ŷ|x)P̌(y̌|x)

[
loss(Ŷ, Y̌)

]
I Feature moments φ̃ = EP̃(x,y)[φ(X,Y)], are measured from training data

I For zero-one loss, it reduces to an optimization convex in θ:

min
θ

∑
i

max
p̌

min
p̂

p̂T
xi

L′xi,θ
p̌xi; L′xi,θ

=

 ψ1,yi(xi) · · · ψ|Y|,yi(xi) + 1
... . . . ...

ψ1,yi(xi) + 1 · · · ψ|Y|,yi(xi)


I Inner zero-sum game can be solved using a linear program

Risk Minimization Perspective
Theorem The model parameters θ for multiclass zero-one adversarial
classification are equivalently obtained from empirical risk minimization
under the adversarial zero-one loss function:

AL0-1
f (xi, yi) = max

S⊆{1,...,|Y|}, S6=∅

∑
j∈S ψj,yi(xi) + |S| − 1

|S|
,where

S is any non-empty member of the powerset of classes {1, 2, . . . , |Y|}

Plots of AL0-1 in binary and 3-class classification
I AL0-1 is the maximum value over 2|Y| − 1

linear hyperplanes
I Binary classification: similar with hinge

loss, but with two hinges at -1 and 1 (as
shown in figure on the right)

I Three class classification: the loss
function has seven facets.

I Comparison with WW and CS
surrogates (as shown below)

Figure: Binary AL0-1 over the
space of potential differences
ψj,y(x) when y = 1

Figure: Loss function contour plots over the space of potential differences for the
prediction task with three classes when y = 1 under AL0-1, WW and CS.

Statistical Consistency
Fisher Consistency
I Minimizing a Fisher consistent loss will yield the Bayes optimal

decision boundary given the true distribution, P(x, y)

I Multiclass: it requires argmaxj f ∗j (x) ⊆ argmaxj Pj(x), where
Pj(x) , P(Y = j|x) and f∗(x) is the minimizer of E [lossf(X,Y)|X = x]

I The minimizer of E
[
AL0-1

f (X,Y)|X = x
]

resides on the hyperplane
defined by the complete set of labels, S = {1, . . . , |Y|}

I It is equivalent with the area where
− 1
|Y| ≤ fj(x) ≤ |Y|−1

|Y| ,∀j ∈ {1, . . . , |Y|}, s.t.
∑

j fj(x) = 0
I The minimization reduces to:

max
f

|Y|∑
y=1

Py(x)fy(x) s.t.: − 1
|Y|
≤ fj(x) ≤ |Y| − 1

|Y|
j ∈ {1, . . . , |Y|};

|Y|∑
j=1

fj(x) = 0

I The solution satisfies the requirement of Fisher consistency
Universal Consistency
I AL0-1 is a Lipschitz loss with constant 1, optimizing it with universal

kernel and reasonablly small regularization on any distribution
yields Bayes optimal classifier. (Steinwart et al. 2008)

Optimization
Primal Optimization using Stochastic Sub-gradient Descent
I The sub-gradient of AL0-1 includes the mean of feature differences:

1
|R|

∑
j∈R

[φ(xi, j)− φ(xi, yi)]

I The set R can be computed optimally using a greedy algorithm
Dual Optimization using Quadratic Programming (QP)
I Constrained QP of AL0-1 plus L2 regularization

min
θ

1
2
‖θ‖2 + C

n∑
i=1

ξi s.t.: ξi ≥ ∆i,k ∀i ∈ {1, . . . n}, k ∈ {1, . . . , 2|Y| − 1}

where 2|Y| − 1 possible constraints for example i are denoted as ∆i,k

I Dual QP formulation

max
α

n∑
i=1

2|Y|−1∑
k=1

νi,k αi,k −
1
2

m∑
i,j=1

2|Y|−1∑
k,l=1

αi,kαj,l [Λi,k · Λj,l]

s.t.: αi,k ≥ 0,
2|Y|−1∑

k=1

αi,k = C, i ∈ {1, . . . , n}, k ∈ {1, . . . , 2|Y| − 1}

where Λi,k ,
d∆i,k

dθ , and νi,k is the constant part of ∆i,k

Kernel Trick
I Dual QP only depends on dot products
I Enables efficient rich feature expansion

Constraint Generation
I The number of constraints in QP is exponential
I Constraint generation method→ efficiently solve the problem
I Polynomial time convergence guarantee is provided

Experiments and Results
Table: The mean and standard deviation of the accuracy for each model with linear and Gaussian
kernel. Bold numbers indicate that the result is the best or not significantly worse than the best.

Dataset
Linear Kernel Gaussian Kernel

AL0-1 WW CS LLW AL0-1 WW CS LLW
iris 96.3 (3.1) 96.0 (2.6) 96.3 (2.4) 79.7 (5.5) 96.7 (2.4) 96.4 (2.4) 96.2 (2.3) 95.4 (2.1)
glass 62.5 (6.0) 62.2 (3.6) 62.5 (3.9) 52.8 (4.6) 69.5 (4.2) 66.8 (4.3) 69.4 (4.8) 69.2 (4.4)
redwine 58.8 (2.0) 59.1 (1.9) 56.6 (2.0) 57.7 (1.7) 63.3 (1.8) 64.2 (2.0) 64.2 (1.9) 64.7 (2.1)
ecoli 86.2 (2.2) 85.7 (2.5) 85.8 (2.3) 74.1 (3.3) 86.0 (2.7) 84.9 (2.4) 85.6 (2.4) 86.0 (2.5)
vehicle 78.8 (2.2) 78.8 (1.7) 78.4 (2.3) 69.8 (3.7) 84.3 (2.5) 84.4 (2.6) 83.8 (2.3) 84.4 (2.6)
segment 94.9 (0.7) 94.9 (0.8) 95.2 (0.8) 75.8 (1.5) 96.5 (0.6) 96.6 (0.5) 96.3 (0.6) 96.4 (0.5)
sat 84.9 (0.7) 85.4 (0.7) 84.7 (0.7) 74.9 (0.9) 91.9 (0.5) 92.0 (0.6) 91.9 (0.5) 91.9 (0.4)
optdigits 96.6 (0.6) 96.5 (0.7) 96.3 (0.6) 76.2 (2.2) 98.7 (0.4) 98.8 (0.4) 98.8 (0.3) 98.9 (0.3)
pageblocks 96.0 (0.5) 96.1 (0.5) 96.3 (0.5) 92.5 (0.8) 96.8 (0.5) 96.6 (0.4) 96.7 (0.4) 96.6 (0.4)
libras 74.1 (3.3) 72.0 (3.8) 71.3 (4.3) 34.0 (6.4) 83.6 (3.8) 83.8 (3.4) 85.0 (3.9) 83.2 (4.2)
vertebral 85.5 (2.9) 85.9 (2.7) 85.4 (3.3) 79.8 (5.6) 86.0 (3.1) 85.3 (2.9) 85.5 (3.3) 84.4 (2.7)
breasttissue 64.4 (7.1) 59.7 (7.8) 66.3 (6.9) 58.3 (8.1) 68.4 (8.6) 68.1 (6.5) 66.6 (8.9) 68.0 (7.2)
avg 81.59 81.02 81.25 68.80 85.14 84.82 85.00 84.93
#bold 9 6 8 0 9 6 6 7

I Experiment using Linear Kernel
I LLW performs poorly in all datasets
I AL0-1 has a slight advantage on average accuracy and number of ”best”

I Experiment using Gaussian Kernel
I Provides access to much richer feature spaces
I Increases performance of all models, especially the LLW
I AL0-1 maintains a slight advantage
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