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SUMMARY

The goal of many prediction tasks in machine learning is to learn a prediction function that

minimizes certain loss metrics (e.g., zero-one, ordinal, and cost-sensitive loss) or maximizes

certain performance metrics (e.g., accuracy, precision, recall, F1-score, and ROC curve) on the

testing dataset. Unfortunately, optimizing these metrics directly via empirical risk minimization

is known to be intractable. In practice, convex surrogate losses over the desired metrics are

needed in order to build efficient learning algorithms with the hope that optimizing the convex

surrogates will indirectly optimize the original metrics given sufficient training data.

Probabilistic and large-margin approaches are two popular paradigms for constructing learn-

ing algorithms that differ in the way they construct convex surrogate losses. Probabilistic ap-

proaches construct prediction probability models and employ the logistic loss as the convex

surrogate. Large-margin approaches aim to maximize the margin that separates correct pre-

dictions from incorrect ones and use the hinge loss for the convex surrogate construction. Both

approaches have their own strengths and weaknesses. The probabilistic approaches enjoy the

statistical guarantee of Fisher consistency, meaning it optimizes the desired performance/loss

metric and produces Bayes optimal classifiers when they learn from any true distribution of

data using a rich feature representation. The large-margin approaches enjoy the computational

efficiency and also the flexibility of aligning the optimization algorithm with the desired perfor-

mance/loss metrics. However, in many cases, probabilistic approaches do not have a mechanism

to easily incorporate customized performance/loss metrics into their learning process, whereas

xiii



SUMMARY (Continued)

large-margin models do not have Fisher consistency guarantees in general (except for the bi-

nary classification case and a few multiclass formulations). This motivates the search for new

approaches that overcome the weaknesses of the probabilistic and large-margin methods.

This thesis addresses the challenges above by constructing new learning algorithms that

simultaneously satisfy the desired properties of: (1) aligning with the learning objective by in-

corporating customized performance/loss metrics into the learning process; (2) providing the

statistical guarantee of Fisher consistency ; (3) enjoying computational efficiency ; and (4) per-

forming competitively in practice. Our approach for constructing the learning algorithms is

based on the robust adversarial formulation, i.e., by focusing on answering the question: “what

predictor best maximizes the performance metric (or minimizes the loss metric) in the worst

case given the statistical summaries of the empirical distributions?” We focus on two different

areas of machine learning: general multiclass classification and structured prediction. In both

areas, we demonstrate the theoretical and practical benefit of our methods.

xiv



CHAPTER 1

INTRODUCTION

1.1 Machine Learning Tasks

Machine learning has been successfully implemented in many real world applications in

different areas. From understanding the meaning of text (Cohn and Blunsom, 2005; Chen et

al., 2017; Tang et al., 2016) and translating languages (Vaswani et al., 2018; Lample et al., 2018)

in the domain of natural language processing or classifying and segmenting images in the domain

of computer vision (Hu et al., 2018; Lin et al., 2018; Chen et al., 2018), to predicting diseases

(Purushotham et al., 2018; Menegola et al., 2017; Rakhlin et al., 2018) and conducting science

experiments (Regier et al., 2015; Albertsson et al., 2018), machine learning provides tools that

help solve these tasks. In many of these prediction tasks, the goal of machine learning algorithms

is to learn a prediction function that minimizes certain loss metrics (e.g., zero-one, ordinal, and

cost-sensitive loss) or maximizes certain performance metrics (e.g., accuracy, precision, recall,

F1-score, and ROC curve) on the testing dataset.

The accuracy performance metric (or the zero-one loss metric) is the most widely used

metric for classification tasks where a learning algorithm needs to choose a prediction from a

finite set of class labels. Some of the example of this classification task are classifying images

and predicting whether a patient has a particular disease. In some tasks where the class label

has an inherent order (e.g., poor, fair, good, very good, and excellent labels), ordinal loss

1
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metrics such as the absolute and square losses are often used (Pedregosa et al., 2017). Many

application tasks where the number of samples in some classes are imbalance (for example,

the task of predicting diseases in health and medicine areas, and several tasks in information

retrieval area), the accuracy metric is unsatisfactory. More appropriate metrics such as the

F-score metric (which is based on precision and recall metrics), the area under the ROC curve

metric, or cost-sensitive loss metrics are often preferred to evaluate the performance of learning

algorithms in these tasks (He and Ma, 2013).

One of the popular principles in designing learning algorithms is empirical risk minimiza-

tion (ERM) (Vapnik, 1992). The ERM framework suggests finding a classifier that minimizes

the risk with respect to the training data, which is the expected value of the loss metric (or

performance metric) produced by a classifier. In practice, it is common to use a modification of

the ERM framework called the structured risk minimization (SRM) framework, which considers

the balance between minimizing the risk and generalization error by penalizing the model com-

plexity (Vapnik, 1992). Unfortunately, since most of the loss/performance metrics are discrete,

non-convex, and non-continuous, optimizing these metrics directly via empirical/structural risk

minimization is known to be intractable once the set of hypotheses is (parametrically) restricted

(e.g., as a linear function of input features) (Hoffgen et al., 1995; Steinwart and Christmann,

2008). To avoid this intractability, many machine learning models employ convex surrogate

losses over the desired metric in order to build efficient learning algorithms with the hope that

optimizing the convex surrogate will indirectly optimize the original metric given sufficient

training data.
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1.2 Two Major Paradigms in Machine Learning

Many different machine learning models can be categorized based on the way they construct

their convex surrogate loss. Among the most popular paradigms are probabilistic approaches

and large-margin approaches. Probabilistic approaches construct predictive probability distri-

butions and employ the logistic loss as the convex surrogate. Large-margin approaches aim to

maximize the margin that separates correct predictions from the incorrect ones and use the

hinge loss for the convex surrogate’s construction.

Both paradigms have produced many machine learning models with different characteristics

for many different tasks. In the most basic binary classification task, probabilistic and large-

margin approaches produce two of the most widely used machine learning models, the logistic

regression model (Cox, 1958) and the support vector machine (SVM) model (Cortes and Vapnik,

1995) respectively. The probabilistic approach extends naturally to the multiclass classification

task as multinomial logistic regression (McCullagh and Nelder, 1989). On the contrary, there

are many competing formulations of the large-margin approach for multiclass classification

(Weston et al., 1999; Crammer and Singer, 2002; Lee et al., 2004; Doğan et al., 2016). In the

ordinal classification task, many extensions from binary classification have been proposed for

both probabilistic and large-margin approaches (Shashua and Levin, 2003; Chu and Keerthi,

2005; Rennie and Srebro, 2005). For more complex loss/performance metrics, the large margin

approach is more commonly used with the introduction of SVMperf (Joachims, 2005), which is an

extension of the SVM algorithm that accepts custom performance metrics. Both probabilistic

and large-margin approaches can also be combined with neural networks and deep learning
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approaches where the convex surrogate losses produced by the probabilistic and large-margin

approaches are used as the last layer (output unit) in the network architecture. In practice,

though, the probabilistic approaches are more popular than the large-margin approach in neural

network constructions (Goodfellow et al., 2016).

In the tasks of structured prediction and graphical models, where a learning algorithm

needs to predict multiple variables simultaneously by considering the relationship among the

variables, the probabilistic approach provides a tool to model the independence properties

among the variables. This results in several probabilistic models, e.g., hidden Markov models

(HMM) (Baum and Petrie, 1966) and conditional random fields (CRF) (Lafferty et al., 2001),

that differ in the way they encode independence properties. On the other hand, the large-margin

approach extends the formulation of multiclass SVM to structured prediction problems. Two

main formulations in this approach are the maximum margin Markov network (M3N) (Taskar

et al., 2005a) and the structured support vector machine (SSVM) (Tsochantaridis et al., 2005).

1.3 Strengths and Weaknesses

The probabilistic and large-margin paradigms offer two different ways to construct convex

surrogate losses for many prediction tasks. Each paradigm come with its own strengths and

weaknesses. In the case of multiclass classification, for example, the probabilistic approach

(logistic regression) enjoys the statistical guarantee of Fisher consistency, meaning it optimizes

the accuracy metric and produces Bayes optimal classifiers when they learn from any true

distribution of data using a rich feature representation (Bartlett et al., 2006). On the other

hand, the large-margin approach (SVM) enjoys computational efficiency via the kernel trick
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and dual parameter sparsity (Cortes and Vapnik, 1995). However, many formulations of the

large-margin approach suffer from Fisher consistency issues (Tewari and Bartlett, 2007; Liu,

2007; Doğan et al., 2016), while the probabilistic approach does not have dual parameter sparsity

(Zhu and Hastie, 2002).

When generalized to structured prediction, probabilistic methods such as conditional ran-

dom field (CRF) (Lafferty et al., 2001) capture probabilistic structures in the model (which

translates to Fisher consistency guarantees), with the downside that the computation of the

normalization term may be intractable. The other weakness of probabilistic methods is that

they do not have an easy mechanism to incorporate customized performance/loss metrics into

their learning process, which is important in many structured prediction settings. Large-margin

models like structured SVM (SSVM) (Tsochantaridis et al., 2005) have the flexibility to align

with the desired performance/loss metric (by incorporating it into the learning process), but

the Fisher consistency property is not guaranteed.

1.4 Combining the Best of Both Worlds

The weaknesses of the probabilistic and large-margin paradigms motivate us to search for a

new approach that overcome these problems. In particular, we are interested in combining the

performance-aligned property of the large-margin methods and the statistical guarantee of the

probabilistic models.

This thesis addresses these challenges by constructing new learning algorithms that simulta-

neously satisfy the desired properties of: (1) aligning with the learning objective by incorporating

customized performance/loss metrics into the learning process; (2) providing the statistical guar-



6

antee of Fisher consistency ; (3) enjoying computational efficiency ; and (4) performing competi-

tively in practice. Our approach for constructing the learning algorithms is based on the robust

adversarial formulation (Topsøe, 1979; Grünwald and Dawid, 2004; Delage and Ye, 2010; Asif

et al., 2015), i.e., by focusing on answering the question: “what predictor best maximizes the

performance metric (or minimizes the loss metric) in the worst case given the statistical sum-

maries of the empirical distributions?” In this thesis, we show that this predictor satisfies the

desired properties of learning algorithms above. We focus on two different areas of machine

learning: general multiclass classification and structured prediction.

1.5 Thesis Outline

To demonstrate the formulations, theoretical properties, optimization algorithms and prac-

tical benefits of our learning algorithms, we divide our contributions into three chapters:

• Chapter 2: Performance-Aligned Surrogate Losses for General Multiclass Classification.

• Chapter 3: Performance-Aligned Adversarial Graphical Models.

• Chapter 4: Adversarial Bipartite Matching in Graphs.

The first and the last chapters serve as the introduction to the topic of this thesis and the

overall conclusion of the thesis respectively.

Performance-Aligned Surrogate Losses for General Multiclass Classification

Our first focus is in general multiclass classification, i.e., multiclass classification with an

arbitrary loss metric. We start with the adversarial learning formulation for general multiclass

classification problem that can be aligned with the desired loss metric. We then take a dual
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perspective of the formulation and view it as a surrogate loss over the desired loss metric. We

derive compact forms of surrogate losses for several metrics (including the zero-one, absolute,

squared, and abstention loss metric), and construct efficient algorithms to compute the surrogate

losses. For theoretical justification, we show that our surrogate losses satisfy the statistical

guarantee of Fisher consistency. We develop efficient optimization algorithms as well as a

way to incorporate richer feature spaces via the kernel trick. Finally, we demonstrate the

effectiveness of our models in several prediction tasks.

Performance-Aligned Adversarial Graphical Models

We next move to structured prediction problems—specifically—prediction tasks in which the

relation among predicted variables are represented in a graph. We compare our approach with

CRF and structured SVM (SSVM) predictors. The CRF has the advantage of Fisher consistency

but cannot be easily aligned with custom performance/loss metrics, whereas the SSVM can

easily align with the metric but without consistency guarantee. We extend our adversarial

formulation for multiclass classification to the graphical model problems. To avoid the need for

computing over exponentially many possible label values in structured prediction, we formulate

our optimization in terms of the node and edge marginal distributions in the graphical structure.

This results in a learning algorithm that has runtime complexity competitive with the CRF and

SSVM. Our formulation can be aligned with any loss metrics that additively decompose over

the nodes in the graph. We show that our approach enjoys the Fisher consistency guarantee as

in the CRF. We then demonstrate the benefit of our methods in two different prediction tasks:

the first one is over chain structures, and the second one is over tree structures.
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Adversarial Bipartite Matching in Graphs

The bipartite matching task is a special case of graphical model where we have two equally-

sized sets of nodes, and aim to model the one-to-one correspondence between the nodes in the

first set with the nodes in the second set. The task is usually formulated as modelling per-

mutations that corresponds to the matching assignments. The CRF model, though possessing

desirable consistency properties, is known to be intractable in this task due to the need of

computing the matrix permanent (a #P-hard problem) in the computation of its normalization

term. Consequently, for a modestly size problem, one needs to employ approximations in order

to apply the method. The SSVM, on the other hand, has a polynomial time algorithm for

computing the most violated constraints in its optimization, leading to an overall polynomial

time complexity. However, as in the standard graphical model, the consistency of SSVM is

not guaranteed. We focus on optimizing the Hamming loss metric in our bipartite matching

formulation. Using a similar marginal formulation technique, we formulate an efficient learning

algorithm for this task. We also show the Fisher consistency of our method. We demonstrate

the benefit of our consistent method compared to the SSVM model in several bipartite match-

ing tasks. In some of some of these prediction tasks, running the CRF is impractical due the

size of the problems.



CHAPTER 2

PERFORMANCE-ALIGNED SURROGATE LOSSES FOR GENERAL

MULTICLASS CLASSIFICATION

(Parts of this chapter were previously published as “Adversarial Multiclass Classification:

A Risk Minimization Perspective” (Fathony et al., 2016) in the Advances in Neural Information

Processing Systems 29 (NIPS 2016), as “Adversarial Surrogate Losses for Ordinal Regression”

(Fathony et al., 2017) in the Advances in Neural Information Processing Systems 30 (NIPS

2017), and as “Consistent Robust Adversarial Prediction for General Multiclass Classification”

(Fathony et al., 2018c) in arXiv preprint arXiv:1812.07526.)

2.1 Introduction

Multiclass classification is a canonical machine learning task in which a predictor chooses

a predicted label from a finite number of possible class labels. For many application domains,

the penalty for making an incorrect prediction is defined by a loss function that depends on

the value of the predicted label and the true label. Zero-one loss classification where the

predictor suffers a loss of one when making incorrect prediction or zero otherwise and ordinal

classification (also known as ordinal regression) where the predictor suffers a loss that increases

as the prediction moves farther away from the true label are the examples of the multiclass

classification problems.

9
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Empirical risk minimization (ERM) (Vapnik, 1992) is a standard approach for solving gen-

eral multiclass classification problems by finding the classifier that minimizes a loss metric over

the training data. However, since directly minimizing this loss over training data within the

ERM framework is generally NP-hard once the set of hypotheses is (parametrically) restricted

(e.g., as a linear function of input features) (Hoffgen et al., 1995; Steinwart and Christmann,

2008), convex surrogate losses that can be efficiently optimized are employed to approximate

the loss. Constructing surrogate losses for binary classification has been well studied, resulting

in surrogate losses that enjoy desirable theoretical properties and good performance in prac-

tice. Among the popular examples are the logarithmic loss, which is minimized by the logistic

regression classifier (Cox, 1958), and the hinge loss, which is minimized by the support vector

machine (SVM) (Boser et al., 1992; Cortes and Vapnik, 1995). Both surrogate losses are Fisher

consistent (Lin, 2002; Bartlett et al., 2006) for binary classification, meaning they minimize the

zero-one loss and yield the Bayes optimal decision when they learn from any true distribution

of data using a sufficiently rich feature representation. SVMs provide the additional advan-

tage that when combined with kernel methods, extremely rich feature representations can be

efficiently incorporated.

Unfortunately, generalizing the hinge loss to multiclass classification tasks with more than

two labels in a theoretically-sound manner is challenging. In the case of multiclass zero-one loss

for example, existing extensions of the hinge loss to multiclass convex surrogates (Crammer and

Singer, 2002; Weston et al., 1999; Lee et al., 2004) tend to lose their Fisher consistency guar-

antees (Tewari and Bartlett, 2007; Liu, 2007) or produce low accuracy predictions in practice
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(Doğan et al., 2016). In the case of multiclass ordinal classification, surrogate losses are usually

constructed by transforming the binary hinge loss to take into account the different penalties

of the ordinal regression problem using thresholding methods (Shashua and Levin, 2003; Chu

and Keerthi, 2005; Lin and Li, 2006; Rennie and Srebro, 2005; Li and Lin, 2007), or sample

re-weighting methods (Li and Lin, 2007). Many methods for other general multiclass problems

also rely on similar transformations of the binary hinge loss to construct convex surrogates

(Binder et al., 2012; Ramaswamy et al., 2018; Lin, 2014). Empirical evaluations have compared

the appropriateness of different surrogate losses for general multiclass classification, but these

still leave the possibility of undiscovered surrogates that align better with the original multiclass

classification loss.

To address these limitations, we propose a robust adversarial prediction framework that

seeks the most robust (Grünwald and Dawid, 2004; Delage and Ye, 2010) prediction distri-

bution that minimizes the loss metric in the worst-case given statistical summaries of the

empirical distributions. We replace the empirical training data for evaluating our predictor

with an adversary that is free to choose an evaluating distribution from the set of distributions

that (approximately) match the statistical summaries of empirical training data via moment

matching constraints of the features. Although the optimized loss metrics are non-convex and

non-continuous, we show that the dual formulation of the framework is a convex empirical

risk minimization model with a prescribed convex surrogate loss that we call the adversarial

surrogate loss.
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We develop algorithms to compute the adversarial surrogate losses efficiently: linear time

for ordinal classification with the absolute loss metric, quasilinear time for the zero-one loss

metric, and linear program-based algorithm for more general loss metrics. We show that the

adversarial surrogate losses fill the existing gap in surrogate loss construction for general multi-

class classification problems by simultaneously: (1) aligning better with the original multiclass

loss metric, since optimizing the surrogate loss is equivalent with optimizing the original loss

metric in the primal adversarial prediction formulation; (2) guaranteeing Fisher consistency;

(3) enabling computational efficiency in a rich feature representation via the kernel trick; and

(4) providing competitive performance in practice.

2.2 Preliminaries and Related Works

In multiclass classification problems, the predictor needs to predict a variable by choosing

one class from a finite set of possible class labels. The most popular form of multiclass classi-

fication uses zero-one loss metric minimization as the objective. This loss metric penalizes all

mistakes equally with a loss of one for incorrect predictions and zero loss otherwise. In fact,

the term “multiclass classification” itself, is widely used to refer to this specific variant that

uses the zero-one loss as the objective. We refer to “general multiclass classification” as the

multiclass classification task that can use any loss metric defined based on the predictor’s label

prediction and the true label in this work.

2.2.1 General Multiclass Classification

In a general multiclass classification problem, the predictor is provided with training ex-

amples that are pairs of training data and labels {(x1, y1), . . . , (xn, yn)} drawn i.i.d. from a
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distribution D on X × Y, where X is the feature space and Y = [k] , {1, . . . , k} is a finite set

of class labels. For a given data point x, the predictor has to provide a class label prediction

ŷ ∈ T = [l] , {1, . . . , l}. Although the set of prediction labels T is usually the same as the set

of ground truth labels Y, we also consider settings in which they differ. A multiclass loss metric

loss(ŷ, y) : T × Y → [0,∞), denotes the loss incurred by predicting ŷ when the true label is y.

The loss metric, loss(ŷ, y), is also commonly written as a loss matrix L ∈ Rl×k+ (in this case,

R+ refers to [0,∞)), where the value of a matrix cell in i-th row and j-th column corresponds

to the value of loss(ŷ, y) when ŷ = i and y = j. Some examples of the loss metrics for general

multiclass classification problems are:

1. Zero-one loss metric. The predictor suffers one loss if its prediction is not the same as

the true label, otherwise it suffers zero loss, loss0-1(ŷ, y) = I(ŷ 6= y).

2. Ordinal classification with absolute loss metric. The predictor suffers a loss that

increases as the prediction moves farther away from the true label. A canonical example

for ordinal classification loss metric is the absolute loss, lossord(ŷ, y) = |ŷ − y|.

3. Ordinal classification with squared loss metric. The squared loss metric, defined

as: losssq(ŷ, y) = (ŷ− y)2, is also popular for evaluating ordinal classification predictions.

4. Classification with abstention. In this prediction setting, a standard zero-one loss

metric is used. However, the predictor has an additional prediction option to abstain

from making a label prediction. Hence, T 6= Y in this setting. A constant penalty α is

incurred whenever the predictor chooses to use the abstain option.
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Example loss matrices for these classification problems are shown in Figure 1.


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0


(a)


0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0


(b)


0 1 4 9 16
1 0 1 4 9
4 1 0 1 4
9 4 1 0 1
16 9 4 1 0


(c)



0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0
1
2

1
2

1
2

1
2

1
2


(d)

Figure 1. Examples of the loss matrices for general multiclass classification when the number
of class labels is 5 and the loss metric is: the zero-one loss (a), ordinal regression with the
absolute loss (b), ordinal regression with the squared loss (c), and classification with abstention
and α = 1

2 (d).

2.2.2 Empirical Risk Minimization and Fisher Consistency

A standard approach to parametric classification is to assume some functional form for the

classifier (e.g., a linear discriminant function, ŷθ(x) = argmaxy θ
ᵀφ(x, y), where φ(x, y) ∈ Rm

is a feature function) and then select model parameters θ that minimize the empirical risk,

argmin
θ

EX,Y∼P̃ [loss (ŷθ(X), Y )] + λ||θ||, (2.1)
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Figure 2. Convex surrogates for the zero-one loss.

with a regularization penalty λ||θ|| often added to avoid overfitting to available training data1.

Unfortunately, many combinations of classification functions, ŷθ(x), and loss metrics, do not

lend themselves to efficient parameter optimization under the empirical risk minimization

(ERM) formulation. For example, the zero-one loss measuring the misclassification rate will

generally lead to a non-convex empirical risk minimization problem that is NP-hard to solve

(Hoffgen et al., 1995).

To avoid these intractabilities, convex surrogate loss functions (Figure 2) that serve as upper

bounds on the desired loss metric are often used to create tractable optimization objectives.

The popular support vector machine (SVM) classifier (Cortes and Vapnik, 1995), for example,

employs the hinge-loss—an upper bound on the zero-one loss—to avoid the often-intractable

1Lowercase non-bold, x, and bold, x, denote scalar and vector values, and capitals, X or X, denote
random variables.
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empirical risk minimization problem. The logistic regression classifier (McCullagh and Nelder,

1989) performs a probabilistic prediction by minimizing the logarithmic loss, whereas Adaboost

(Freund and Schapire, 1997) incrementally minimizes the exponential loss.

There are many ways to construct convex surrogate loss functions for a given loss metric that

we want to optimize. An important property for theoretically guaranteeing optimal prediction is

Fisher consistency. It requires a learning method to produce Bayes optimal predictions which

minimize the expected loss of this distribution, ŷ ∈ argmaxy′ EY∼P [loss(y′, Y )] under ideal

learning conditions (trained from the true data distribution P (Y |X) using a fully expressive

feature representation). Fisher consistency property guarantees that a learning algorithm (i.e.

surrogate loss) reaches the optimal prediction under the original loss metric in the limit. A

technique to characterize the Fisher consistency of surrogate losses for the multiclass zero-

one loss metric has been developed using the “classification calibration” concept (Tewari and

Bartlett, 2007), which then been extended to general multiclass loss metrics (Ramaswamy and

Agarwal, 2012; Ramaswamy and Agarwal, 2016).

2.2.3 Multiclass Classification Methods

A variety of methods have been proposed to address the general multiclass classification

problem. Most of the methods can be viewed as optimizing surrogate losses that come from

the extension of binary surrogate loss, e.g., hinge loss (used by SVM), logistic loss (used by

logistic regression) and exponential loss (used by AdaBoost), to general multiclass cases. We

narrow our focus over this broad range of methods found in the related work to those that
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can be viewed as empirical risk minimization methods with piece-wise convex surrogates (i.e.

generalized hinge loss / generalized SVM), which are more closely related to our approach.

2.2.3.1 Multiclass Zero-one Classification

The multiclass support vector machine (SVM) seeks class-based potentials fy(x) for each

input vector x ∈ X and class y ∈ Y so that the discriminant function, ŷf (x) = argmaxy fy(x),

minimizes misclassification errors, lossf (x, y) = I(y 6= ŷf (x)). Many methods have been pro-

posed to generalize SVM to the multiclass setting. Apart from the one-vs-all and one-vs-one

decomposed formulations (Deng et al., 2012), there are three main joint formulations:

1. The WW model (Weston et al., 1999), which incorporates the sum of hinge losses for all

alternative labels,

lossWW(x, y) =
∑

j 6=y [1 + (fj(x)− fy(x))]+; (2.2)

2. The CS model (Crammer and Singer, 2002), which uses the hinge loss of only the largest

alternative label,

lossCS(x, y) = maxj 6=y [1 + (fj(x)− fy(x))]+ ; and (2.3)

3. The LLW model (Lee et al., 2004), which employs an absolute hinge loss,

lossLLW(x, y) =
∑

j 6=y [1 + fj(x)]+ , (2.4)
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and a constraint that
∑

j fj(x) = 0.

The former two models (the CS and WW) both utilize the pairwise class-based potential dif-

ferences fj(x)− fy(x) and are therefore categorized as relative margin methods. The LLW, on

the other hand, is an absolute margin method that only relates to fj(x) (Doğan et al., 2016).

Fisher consistency, or Bayes consistency (Bartlett et al., 2006; Tewari and Bartlett, 2007),

guarantees that minimization of a surrogate loss under the true distribution provides the Bayes-

optimal classifier, i.e., minimizes the zero-one loss. Among these methods, only the LLW method

is Fisher consistent (Lee et al., 2004; Tewari and Bartlett, 2007; Liu, 2007). However, the LLW’s

use of an absolute margin in the loss (rather than the relative margin of the WW and CS) often

causes it to perform poorly for datasets with low dimensional feature spaces (Doğan et al.,

2016). From the opposite direction, the requirements for Fisher consistency have been well-

characterized (Tewari and Bartlett, 2007), yet this has not led to a multiclass classifier that is

Fisher consistent and performs well in practice.

2.2.3.2 Multiclass Ordinal Classification

Existing techniques for ordinal classification that optimize piece-wise convex surrogates can

be categorized into three groups as follows.

1. Threshold methods for ordinal classification.

Threshold methods treat the ordinal response variable, f̂ , w · x, as a continuous real-

valued variable and introduce k − 1 thresholds η1, η2, ..., ηk−1 that partition the real line

into k segments: η0 = −∞ < η1 < η2 < ... < ηk−1 < ηk =∞. Each segment corresponds

to a label with ŷi assigned label j if ηj−1 < f̂ ≤ ηj . There are two different approaches for
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constructing surrogate losses based on the threshold methods to optimize the choice of w

and η1, . . . , ηk−1 (Shashua and Levin, 2003; Chu and Keerthi, 2005; Rennie and Srebro,

2005). All thresholds method (also called SVORIM) penalizes all thresholds involved

when a mistake is made. Immediate thresholds (also called SVOREX) only penalizes the

most immediate thresholds.

2. A reduction framework from ordinal classification to binary classification.

Reduction framework is a technique to convert ordinal regression problems to binary

classification problems by extending training examples (Li and Lin, 2007). For each

training sample (x, y), the reduction framework creates k−1 extended samples (x(j), y(j))

and assigns weight wy,j to each extended sample. The binary label associated with the

extended sample is equivalent to the answer of the question: “is the rank of x greater

than j?” The reduction framework allows a choice for how extended samples x(j) are

constructed from original samples x and how to perform binary classification.

3. Cost-sensitive classification methods for ordinal classification.

Rather than using thresholding or the reduction framework, ordinal regression can also be

cast as a special case of cost-sensitive multiclass classification. Two of the most popular

classification-based ordinal regression techniques are extensions of one-versus-one (OVO)

and one-versus-all (OVA) cost-sensitive classification (Lin, 2008; Lin, 2014). Both algo-

rithms leverage a transformation that converts a cost-sensitive classification problem to

a set of weighted binary classification problems. Rather than reducing to binary clas-

sification, cost-sensitive classification can also be reduced to one-sided regression (OSR)
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problem, which can be viewed as an extension of the one-versus-all (OVA) technique (Tu

and Lin, 2010).

In terms of Fisher consistency, many surrogate losses for ordinal classification enjoy this

theoretical property. For example, the all thresholds methods are Fisher consistent provided

that the base binary surrogate losses they use are convex with differentiability and a negative

derivative at zero (Pedregosa et al., 2017).

2.2.3.3 Multiclass Classification with Abstention

In the classification with abstention setting, a standard zero-one loss is used to evaluate the

prediction. However, the predictor has an additional option to abstain from making a label

prediction and suffer a constant penalty α. In the literature, this type of prediction setting is

also called “classification with reject option”.

Most of the early studies on classification with abstention focused on the binary prediction

case. For example, a consistent surrogate loss based on the SVM’s hinge loss for binary clas-

sification with abstention where the value of α is restricted to the interval [0, 1
2 ] (Bartlett and

Wegkamp, 2008), which then been extended to the case where the abstention penalty between

the positive class α+ and negative class α− is non-symmetric (Grandvalet et al., 2009). Boost-

ing algorithm (Freund and Schapire, 1997) can also be modified to incorporate the abstention

setting into the prediction (Cortes et al., 2016). The method also proposed a base weak classi-

fier, abstention stump, which is a modification from the popular weak classifier for the standard

boosting algorithm (decision stump).
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For multiclass classification setting, binary hinge loss can be extended to the case of multi-

class classification with abstention (Ramaswamy et al., 2018). The study extended the definition

of SVM’s one-versus-all (OVA) and Crammer-Singer (CS) models to incorporate the abstention

penalty. It also proposed a consistent algorithm for multiclass classification with abstention in

the case of α ∈ [0, 1
2 ], by encoding the prediction classes in binary number representation and

formulate a binary encoded prediction (BEP) surrogate.

2.3 Adversarial Prediction Formulation for Multiclass Classification

In a general multiclass classification problem, the predictor needs to make a label prediction

ŷ ∈ T = {1, . . . , l} for a given data point x. To evaluate the performance of the prediction,

we compute the multiclass loss metric loss(ŷ, y) by comparing the prediction to the ground

truth label y. The predictor is also allowed to make a probabilistic prediction by outputting a

conditional probability P̂ (Ŷ |x). In this case, the expected loss EŶ |x∼P̂ loss(Ŷ , y) =
∑l

i=1 P̂ (Ŷ =

i|x) loss(i, y) is measured. Note that in our notation, the upper case Y and X refer to random

variables (of a scalar and vector respectively) while lower case y and x refer to the observed

variables.

Our approach seeks a predictor that robustly minimizes a multiclass loss metric against

the worst-case distribution that (approximately) matches the statistics of the training data.

In this setting, a predictor makes a probabilistic prediction over the set of all possible labels

(denoted as P̂ (Ŷ |X)). Instead of evaluating the predictor with the empirical distribution, the

predictor is pitted against an adversary that also makes a probabilistic prediction (denoted as

P̌ (Y̌ |X)). The predictor’s objective is to minimize the expected loss metric calculated from
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the predictor’s and adversary’s probabilistic predictions, while the adversary seeks to maximize

the loss. The adversary is constrained to select a probabilistic prediction that matches the

statistical summaries of the empirical training distribution (denoted as P̃ ) via moment-matching

constraints on the features φ(x, y).

Definition 2.1. In the adversarial prediction framework for general multiclass classifi-

cation, the predictor player first selects a predictive distribution, P̂ (Ŷ |X), for each input x,

from the conditional probability simplex, and then the adversarial player selects an evaluation

distribution, P̌ (Y̌ |X), for each input x from the set of distributions consistent with the known

statistics:

min
P̂ (Ŷ |X)

max
P̌ (Y̌ |X)

EX∼P̃ ;Ŷ |X∼P̂ ;Y̌ |X∼P̌

[
loss(Ŷ , Y̌ )

]
(2.5)

subject to: EX∼P̃ ;Y̌ |X∼P̌ [φ(X, Y̌ )] = EX,Y∼P̃ [φ(X, Y )] .

Here, the statistics EX,Y∼P̃ [φ(X, Y )] are a vector of provided feature moments measured from

training data.

For the purpose of establishing efficient learning algorithms, we use the method of La-

grangian multipliers and strong duality for convex-concave saddle point problems (Von Neu-

mann and Morgenstern, 1945; Sion, 1958) to formulate the equivalent dual optimization as

stated in Theorem 2.1.



23

Theorem 2.1. Determining the value of the constrained adversarial prediction minimax game

reduces to a minimization over the empirical average of the value of many unconstrained mini-

max games:

min
θ

EX,Y∼P̃

[
max
P̌ (Y̌ |X)

min
P̂ (Ŷ |X)

EŶ |X∼P̂ ;Y̌ |X∼P̌

[
loss(Ŷ , Y̌ ) + θᵀ

(
φ(X, Y̌ )− φ(X, Y )

)]]
, (2.6)

where θ is the Lagrange dual variable for the moment matching constraints.

Proof.

min
P̂ (Ŷ |X)

max
P̌ (Y̌ |X)

EX∼P̃ ;Ŷ |X∼P̂ ;Y̌ |X∼P̌

[
loss(Ŷ , Y̌ )

]
(2.7)

subject to: EX∼P̃ ;Y̌ |X∼P̌
[
φ(X, Y̌ )

]
= EX,Y∼P̃ [φ(X, Y )]

(a)
= max

P̌ (Y̌ |X)
min

P̂ (Ŷ |X)
EX∼P̃ ;Ŷ |X∼P̂ ;Y̌ |X∼P̌

[
loss(Ŷ , Y̌ )

]
(2.8)

subject to: EX∼P̃ ;Y̌ |X∼P̌
[
φ(X, Y̌ )

]
= EX,Y∼P̃ [φ(X, Y )]

(b)
= max

P̌ (Y̌ |X)
min
θ

min
P̂ (Ŷ |X)

EX,Y∼P̃ ;Ŷ |X∼P̂ ;Y̌ |X∼P̌

[
loss(Ŷ , Y̌ ) + θᵀ

(
φ(X, Y̌ )− φ(X, Y )

)]
(2.9)

(c)
= min

θ
max
P̌ (Y̌ |X)

min
P̂ (Ŷ |X)

EX,Y∼P̃ ;Ŷ |X∼P̂ ;Y̌ |X∼P̌

[
loss(Ŷ , Y̌ ) + θᵀ

(
φ(X, Y̌ )− φ(X, Y )

)]
(2.10)

(d)
= min

θ
EX,Y∼P̃

[
max
P̌ (Y̌ |X)

min
P̂ (Ŷ |X)

EŶ |X∼P̂ ;Y̌ |X∼P̌

[
loss(Ŷ , Y̌ ) + θᵀ

(
φ(X, Y̌ )− φ(X, Y )

)]]
. (2.11)

The transformation steps above are described as follows:
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(a) We flip the min and max order using minimax duality (Von Neumann and Morgenstern,

1945). The domains of P̂ (Ŷ |X) and P̌ (Y̌ |X) are both compact convex sets and the

objective function is bilinear, therefore, strong duality holds.

(b) We introduce the Lagrange dual variable θ to directly incorporate the equality constraints

into the objective function.

(c) The domain of P̌ (Y̌ |X) is a compact convex subset of Rn, while the domain of θ is

Rm. The objective is concave on P̌ (Y̌ |X) for all θ (a non-negative linear combination of

minimums of affine functions is concave), while it is convex on θ for all P̌ (Y̌ |X). Based

on Sion’s minimax theorem (Sion, 1958), strong duality holds, and thus we can flip the

optimization order of P̌ (Y̌ |X) and θ.

(d) Since the expression is additive in terms of P̌ (Y̌ |X) and P̂ (Ŷ |X), we can push the expec-

tation over the empirical distribution X, Y ∼ P̃ outside and independently optimize each

P̌ (Y̌ |x) and P̂ (Ŷ |x).

The dual problem (Equation (2.6)) possesses the important property of being a convex

optimization problem in θ. The objective of Equation (2.6) consists of the function loss(Ŷ , Y̌ )+

θᵀ
(
φ(X, Y̌ )− φ(X, Y )

)
which is an affine function with respect to θ, followed by operations

that preserve convexity (Boyd and Vandenberghe, 2004): (1) the non-negative weighted sum

(the expectations in the objective), (2) the minimization in the predictor P̂ (Ŷ |X) over a non-

empty convex set out of a function that is jointly convex in θ and P̂ (Ŷ |X), and (3) the point-
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wise maximum in the adversary distribution P̌ (Y̌ |X) over an infinite set of convex functions.

Therefore, the overall objective is convex with respect to θ. This property is important since

we can use gradient-based optimization in our learning algorithm and guarantee convergence to

the global optimum of the objective despite the fact that the original loss metrics we want to

optimize in the primal formulation of the adversarial prediction (Equation (2.5)) are non-convex

and non-continuous.

2.4 Adversarial Surrogate Losses

Despite the different motivations between our adversarial prediction framework and the

empirical risk minimization framework, the dual optimization formulation (Equation (2.6))

resembles a risk minimization problem with the surrogate loss defined as:

AL(x, y, θ) = max
P̌ (Y̌ |x)

min
P̂ (Ŷ |x)

EŶ |x∼P̂ ;Y̌ |x∼P̌

[
loss(Ŷ , Y̌ ) + θᵀ

(
φ(x, Y̌ )− φ(x, y)

)]
. (2.12)

We call this surrogate loss the “adversarial surrogate loss” or in short “AL”. In the next subsec-

tions, we will analyze more about this surrogate loss for different instances of general multiclass

classification problems.

Let us first simplify the notation used in our surrogate loss. We construct a vector p to

compactly represent the predictor’s conditional probability P̂ (Ŷ |x), where the value of its i-th

index is pi = P̂ (Ŷ = i|x). Similarly, we construct a vector q for the adversary’s conditional

probability, i.e., qi = P̌ (Y̌ = i|x). We also define a potential vector f whose i-th index stores

the potential for the i-th class, i.e., fi = θᵀφ(x, i). Finally, we use a matrix L to represent the
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loss function introduced at the beginning of this section. Using these notations, we can rewrite

our adversarial surrogate loss as:

AL(f , y) = max
q∈∆

min
p∈∆

pᵀLq + fᵀq− fy, (2.13)

where ∆ denotes the conditional probability simplex. The maximin formulation above can be

converted to a linear program as follows:

AL(f , y) = max
q,v

v + fᵀq− fy (2.14)

s.t.: L(i,:)q ≥ v ∀i ∈ [k]

qi ≥ 0 ∀i ∈ [k]

qᵀ1 = 1,

where v is a slack variable for converting the inner minimization into sets of linear inequality

constraints, and L(i,:) denote the i-th row of matrix L. We will analyze the solution of this

linear program for several different types of loss metrics to construct a simpler closed-form

formulation of the surrogate loss.

2.4.1 Multiclass Zero-One Classification

The multiclass zero-one loss metric is one of the most popular metrics used in multiclass

classification. The loss metric penalizes an incorrect prediction with a loss of one and zero
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otherwise, i.e., loss(ŷ, y) = I(ŷ 6= y). An example of zero-one loss matrix for classification with

five classes can be seen in Figure 1a.

We focus on analyzing the solution of the maximization in Equation (2.14) for the case

where L is the zero-one loss matrix. Since the objective in Equation (2.14) is linear and the

constraints form a convex polytope C over the space of

[
q

v

]
, there is always an optimal solution

that is an extreme point of the domain (Rockafellar, 1970, Theorem 32.2). The only catch

is that C is not bounded, but this can be easily addressed by adding a nominal constraint

v ≥ −1 (see Proposition 2.2). Our strategy is to first characterize the extreme points of C that

may possibly solve Equation (2.14), and then the evaluation of adversarial loss (AL) becomes

equivalent to finding an extreme point that maximizes the objective in Equation (2.14).

The polytope C can be defined in its canonical form by using the half-space representation

of a polytope as follows:

C =


[
q

v

] ∣∣∣∣∣∣∣∣∣∣
A

[
q

v

]
≥ b, where A =


L −1

I 0

1ᵀ 0

−1ᵀ 0

 , b =


0

0

1

−1


 . (2.15)

Here L is a k-by-k loss matrix, I is a k-by-k identity matrix, 1 and 0 are vectors with length

k that contain all 1 and or all 0 respectively. A has 2k + 2 rows and k + 1 columns. Below
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is an example of this half-space representation for a four-class classification with zero-one loss

metric:

1st block

2nd block

3rd block



0 1 1 1 −1

1 0 1 1 −1

1 1 0 1 −1

1 1 1 0 −1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 1 1 1 0

−1 −1 −1 −1 0




q1

q2

q3

q4

v

 ≥



0

0

0

0

0

0

0

0

1

−1



. (2.16)

For simplicity, we divide A into 3 blocks of rows. The first block contains k rows defining the

constraints that relate the loss matrix with the slack variable v, the second block also contains

k rows for non-negativity constraints, and the third block is for the sum-to-one constraints.

To characterize the extreme points of C that solve Equation (2.14), we utilize the alge-

braic characterization of extreme points in a bounded polytope given by Theorem 3.17 from

(Andréasson et al., 2005). For convenience, we quote it here.

Proposition 2.1 (Theorem 3.17 from (Andréasson et al., 2005)). Let P , {c ∈ Rn | Ac ≥ b}

be a bounded polytope, where A ∈ Rm×n has rank(A) = n and b ∈ Rm. For any c̄ ∈ P, let I(c̄)

be the set of row index i such that A(i,:)c̄ = bi. Let Ac̄ and bc̄ be the submatrix and subvector

of A and b that extract the rows in I(c̄), respectively. Then Ac̄c = bc̄ is called the equality

subsystem for c̄, and c̄ ∈ P is an extreme point if and only if rank(Ac̄) = n.
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Since C is not bounded (v can diverge to −∞), we now further characterize a subset of C

that must include an optimal solution to Equation (2.14).

Proposition 2.2. Let ext C = {c ∈ C| rank(Ac) = k+1}. Then ext C must contain an optimal

solution to Equation (2.14).

Proof. Let us add a nominal constraint of v ≥ −1 to the definition of C, and denote the new

polytope as C̄ :=

{
c : Gc ≥

[
b

−1

]}
, where G =

[
A

0ᵀ 1

]
. It does not change the solution to

Equation (2.14) because v appears in the objective only as v, and L(i,:)q ≥ 0. However, this

additional constraint makes C̄ compact, allowing us to apply Theorem 3.17 of (Andréasson et

al., 2005) and conclude that any c =

[
q

v

]
is an extreme point of C̄ if and only if rank(Gc) = k+1.

But all optimal solutions must have v ≥ 0, hence the last row of G cannot be in Gc. So it

suffices to consider c with Gc = Ac, whence rank(Ac) = k + 1.

Obviously, Ac must include the third block of A for all c ∈ C in Equation (2.15). The rank

condition also enforces that at least one row from the first block is selected.

For convenience, we will refer to ext C as the extreme point of C.1 By analyzing ext C in

the case of multiclass zero-one classification, we simplify the adversarial surrogate loss (Equa-

tion (2.14)) as stated in the following Theorem 2.2.

1Indeed, it is the bona fide extreme point set of C under the standard definition which does not
require compactness (Rockafellar, 1970, Section 18). But the guarantee of attaining optimality at an
extreme point does require boundedness.
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Theorem 2.2. The model parameter θ for multiclass zero-one adversarial classification is equiv-

alently obtained from empirical risk minimization under the adversarial zero-one loss function:

AL0-1(f , y) = max
S⊆[k], S 6=∅

∑
i∈S fi + |S| − 1

|S|
− fy, (2.17)

where S is any non-empty subset of the k classes.

Proof. The AL0-1 above corresponds to the set of “extreme points”1

D =

{[
q

v

]
=

1

|S|

[∑
i∈S ei

|S| − 1

] ∣∣∣∣∣ ∅ 6= S ⊆ [k]

}
, (2.18)

where ei ∈ Rk is the i-th canonical vector with a single 1 at the i-th coordinate and 0 elsewhere.

That means q first picks a nonempty support S ⊆ [k], then places uniform probability of 1
|S|

on these coordinates, and finally sets v to |S|−1
|S| .

By Proposition 2.2, it now suffices to prove that D ⊆ C and D ⊇ ext C = {c ∈ C :

rank(Ac) = k + 1}, i.e., any c ∈ C whose equality system satisfies rank(Ac) = k + 1 must be

in D. D ⊆ C is trivial, so we focus on D ⊇ ext C.

Given c ∈ ext C, suppose the set of rows that Ac selected from the first and second block

of A are R and T , respectively. Both R and T are subsets of [k], indexed against A. We first

observe that R and T must be disjoint because if i ∈ R ∩ T , then qi = 0 and v = L(i,:)q =

1We add a quotation mark here because our proof will only show, as it suffices to show, that D
contains all the extreme points of C and D ⊆ C. We do not need to show that D is exactly the extreme
point set of C, although that fact is not hard to show either.
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∑
j 6=i qj = 1 − qi = 1. But then for all j, L(j,:)q ≥ v implies 1 ≤

∑
l 6=j ql = 1 − qj . This is

impossible as it means q = 0.

Now that R and T are disjoint, rank(Ac) = k + 1 implies that R = [k]\T . Since qi = 0

for all i ∈ T , solving |R| linear equalities with respect to |R| unknowns yield qj = 1/|R| for all

j ∈ R. Such a tuple of q and v is clearly in D. Obviously, R cannot be empty because then

T = [k] and q = 0.

We denote the potential differences ψi,y = fi−fy, then Equation (2.17), can be equivalently

written as:

AL0-1(f , y) = max
S⊆[k], S 6=∅

∑
i∈S ψi,y + |S| − 1

|S|
. (2.19)

Thus, AL0-1 is the maximum value over 2k − 1 linear hyperplanes. For binary prediction tasks,

there are three linear hyperplanes: ψ1,y, ψ2,y and
ψ1,y+ψ2,y+1

2 . Figure 3 shows the loss function

in potential difference space ψ when the true label is y = 1. Note that AL0-1 combines two

hinge functions at ψ2,y = −1 and ψ2,y = 1, rather than SVM’s single hinge at ψ2,y = −1.

This difference from the hinge loss corresponds to the loss that is realized by randomizing label

predictions of P̂ (Ŷ |x) in Equation (2.12).

For three classes, the loss function has seven facets as shown in Figure 4a. Figure 4a, 4b,

and 4c show the similarities and differences between AL0-1 and the multiclass SVM surrogate

losses based on class potential differences. Note that AL0-1 is a relative margin loss function

that utilizes the pairwise potential difference ψi,y. This avoids the surrogate loss construction
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Figure 3. AL0-1 evaluated over the space of potential differences (ψi,y = fi − fy; and ψi,i = 0)
for binary prediction tasks when the true label is y = 1.

pitfall pointed out by (Doğan et al., 2016) which states that surrogate losses based on the

absolute margin (rather than relative margin) may suffer from low performance for datasets

with low dimensional feature spaces.

Even though AL0-1 is the maximization over 2k − 1 possible values, it can be efficiently

computed as follows. First we need to sort the potential for all labels {fi : i ∈ [k]} in non-

increasing order. The set S∗ that maximize AL0-1 must include the first j labels in the sorted

order, for some value of j. Therefore, to compute AL0-1, we can incrementally add the label

in the sorted order to the set S∗ until adding an additional label would decrease the value of

the loss. This results in an algorithm with a runtime complexity of O(k log k), which is much

faster than enumerating all possible values in the maximization.
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Figure 4. Loss function contour plots over the space of potential differences for the prediction
task with three classes when the true label is y = 1 under AL0-1 (a), the WW loss (b), and the
CS loss (c). (Note that ψi in the plots refers to ψi,y = fi − fy; and ψi,i = 0.)

Theorem 2.3. The algorithm for computing AL0-1 above is optimal.

Proof. To calculate the set S∗ that maximize AL0-1 given the potentials of for all labels sorted

in non-increasing order, the algorithm starts with the empty set S = ∅, it then adds labels to

S in sorted order until adding a label would decrease the value of
∑
i∈S fi+|S|−1

|S| . If the set that

maximizes AL0-1 has j elements, it must contain the j largest potentials, otherwise we can swap

the potentials that are not in the j largest potentials list with the potentials in the list and get

a larger value. We are now left to prove that adding more potentials will not increase the value

of the loss.

Let fi denote the potentials sorted in non-increasing order, i.e. f1 ≥ f2 ≥ · · · ≥ fk, and

let j be the size of the set S∗, hence
∑
i∈S∗ fi+|S∗|−1

|S∗| =
∑j
i=1 fi+j−1

j . We aim to prove that
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∑j
i=1 fi+j−1

j ≥
∑j+l
i=1 fi+j+l−1

j+l for any l = {1, . . . , k − j}. From the construction of the algorithm

we know that it is true for l = 1, i.e.,:

∑j
i=1 fi + j − 1

j
≥

∑j+1
i=1 fi+j
j+1 (2.20)

(j + 1)
(∑j

i=1 fi + j − 1
)
≥ j

(∑j+1
i=1 fi + j

)
(2.21)

j
∑j

i=1 fi + j2 − j +
∑j

i=1 fi + j − 1 ≥ j
∑j

i=1 fi + jfj+1 + j2 (2.22)

∑j
i=1 fi − 1 ≥ jfj+1. (2.23)

Since the potentials are sorted in non-increasing order, then for any l = {1, . . . , k − j}:

l
(∑j

i=1 fi − 1
)
≥ ljfj+1 ≥ j

∑l
i=1 fj+l (2.24)

l
∑j

i=1 fi − l + j
∑j

i=1 fi + j2 + j(l − 1) ≥ j
∑l

i=1 fj+l + j
∑j

i=1 fi + j2 + j(l − 1) (2.25)

j
∑j

i=1 fi + j2 − j + l
∑j

i=1 fi + lk − l ≥ j
∑j+l

i=1 fi + j2 + j(l − 1) (2.26)

(j + l)
(∑j

i=1 fi + j − 1
)
≥ j

(∑j+l
i=1 fi + j + l − 1

)
(2.27)∑j

i=1 fi + j − 1

j
≥
∑j+l

i=1 fi + j + l − 1

j + l
. (2.28)

Therefore, we can conclude that the algorithm for computing AL0-1 is optimal.

2.4.2 Ordinal Classification with Absolute Loss

In multiclass ordinal classification (also known as ordinal regression), the discrete class

labels being predicted have an inherent order (e.g., poor, fair, good, very good, and excellent
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labels). The absolute error, loss(ŷ, y) = |ŷ − y| between label prediction (ŷ ∈ Y) and actual

label (y ∈ Y) is a canonical ordinal regression loss metric. The adversarial surrogate loss for

ordinal classification using the absolute loss metric is defined in Equation (2.14), where L is the

absolute loss matrix (e.g., Figure 1b for a five-class ordinal classification). The constraints in

Equation (2.14) form a convex polytope C. Below is an example of the half-space representation

of C for a four-class ordinal classification problem.

1st block

2nd block

3rd block



0 1 2 3 −1

1 0 1 2 −1

2 1 0 1 −1

3 2 1 0 −1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 1 1 1 0

−1 −1 −1 −1 0




q1

q2

q3

q4

v

 ≥



0

0

0

0

0

0

0

0

1

−1



. (2.29)

By analyzing the extreme points of C, we define the adversarial surrogate loss for ordinal

classification with absolute loss ALord as stated in Theorem 2.4.

Theorem 2.4. An adversarial ordinal classification predictor with absolute loss is obtained by

choosing parameters θ that minimize the empirical risk of the surrogate loss function:

ALord(f , y) = max
i,j∈[k];i≤j

fi + fj + j − i
2

− fy. (2.30)
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Proof. The ALord above corresponds to the set of “extreme points”

D =

{[
q

v

]
=

1

2

[
ei + ej

j − i

] ∣∣∣∣∣ i, j ∈ [k]; i ≤ j

}
. (2.31)

This means q can only have one or two non-zero elements (note that i and j can be equal) with

uniform probability of 1
2 and the value of v is j−i

2 , where i ≤ j.

Similar to the proof of Theorem 2.2, we next prove that D ⊇ ext C = {c ∈ C : rank(Ac) =

k + 1}. Given c ∈ ext C, suppose the set of rows that Ac selected from the first and second

block of A are S and T , respectively. Both S and T are subsets of [k], indexed against A.

Denote smax = max(S) and smin = min(S). We consider two cases:

1. S ∩ T = ∅: the indices selected from the first and second blocks are disjoint.

It is easy to check that c must be

[
q

v

]
:= 1

2

[
esmax + esmin

smax − smin

]
. Obviously, it satisfies

(being equal) the rows in Ac extracted from the first and third blocks of A, because

|l − smax| + |l − smin| = smax − smin for all l ∈ S. Since S ∩ T = ∅, c must also satisfy

those rows from the second block. Finally notice that only one vector in Rk+1 can meet

all the equalities encoded by Ac because rank(Ac) = k + 1. Obviously, c ∈ D.

2. S ∩ T 6= ∅: the indices from the first block overlap with those from the second block.

Including in Ac the i-th row of the second block means setting qi to 0. Denote the set

of remaining indices as R = [k]\T , and let rmax = max(R) and rmin = min(R). Now

consider two sub-cases:
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a) rmin ≤ smin and rmax ≥ smax.

One may check that c must be

[
q

v

]
:= 1

2

[
ermax + ermin

rmax − rmin

]
. Obviously, it satisfies

(being equal) the rows in Ac extracted from the first and third blocks of A, because

for all l ∈ S, l ≥ smin ≥ rmin and l ≤ smax ≤ rmax, implying |l − rmax|+ |l − rmin| =

rmax− rmin. Since by definition rmax and rmin are not among the rows selected from

the second block, the equalities from the second block must also be satisfied. As in

case 1, only one vector in Rk+1 can meet all the equalities encoded by Ac because

rank(Ac) = k + 1. Obviously, c ∈ D.

b) rmin > smin or rmax < smax.

We first show rmin > smin is impossible. By definition of R, ql = 0 for all l < rmin.

For all l ≥ rmin (> smin), it follows that L(smin,l) = l − smin > l − rmin = L(rmin,l).

Noting that at least one ql must be positive for l ≥ rmin (because of the sum-to-

one constraint), we conclude that L(smin,:)q > L(rmin,:)q. But this contradicts with

L(smin,:)q = v ≤ L(rmin,:)q, where the equality is because smin ∈ S.

Similarly, rmax < smax is also impossible.

Therefore, in all possible cases, we have shown that any c in ext C must be in D. Further

noticing the obvious fact that D ⊆ C, we conclude our proof.

We note that the ALord surrogate is the maximization over pairs of different potential

functions associated with each class (including pairs of identical class labels) added to the
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distance between the pair. To compute the loss more efficiently, we make use of the fact that

maximization over each element of the pair can be independently realized:

max
i,j∈[k];i≤j

fi + fj + j − i
2

− fy = max
i,j∈[k]

fi + fj + j − i
2

− fy = 1
2 max

i
(fi−i) + 1

2 max
j

(fj+j)− fy.

(2.32)

We derive two different versions of ALord based on different feature representations used for

constraining the adversary’s probability distribution.

2.4.2.1 Feature Representations

We consider two feature representations corresponding to different training data summaries:

φth(x, y) =



yx

I(y ≤ 1)

I(y ≤ 2)
...

I(y ≤ k − 1)


; and φmc(x, y) =



I(y = 1)x

I(y = 2)x

I(y = 3)x
...

I(y = k)x


. (2.33)

The first, which we call the thresholded regression representation, has size m+ k− 1,

where m is the dimension of our input space. It induces a single shared vector of feature weights

and a set of thresholds. If we denote the weight vector associated with the yx term as w and

the terms associated with the cumulative sum of class indicator functions as η1, η2, . . ., ηk−1,

then thresholds for switching between class i and i + 1 (ignoring other classes) occur when

w · x = ηj .
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The second feature representation, φmc, which we call the multiclass representation, has

size mk and can be equivalently interpreted as inducing a set of class-specific feature weights,

fi = wi · x. This feature representation is useful when ordered labels cannot be thresholded

according to any single direction in the input space, as shown in the example dataset of Figure 5.

Figure 5. Example where multiple weight vectors are useful.

2.4.2.2 Thresholded regression surrogate loss

In the thresholded regression feature representation, the parameter contains a single shared

vector of feature weights w and k − 1 terms ηk associated with thresholds. Following Equa-
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tion (2.32), the adversarial ordinal regression surrogate loss for this feature representation can

be written as:

ALord-th(x, y) = max
i

i(w · x− 1) +
∑

l≥i ηl

2
+ max

j

j(w · x + 1) +
∑

l≥j ηl

2
− yw · x−

∑
l≥y

ηl. (2.34)

This loss has a straight-forward interpretation in terms of the thresholded regression per-

spective, as shown in Figure Figure 6: it is based on averaging the thresholded label predictions

for potentials w · x − 1 and w · x + 1. This penalization of the pair of thresholds differs from

the thresholded surrogate losses of related work, which either penalize all violated thresholds

or penalize only the thresholds adjacent to the actual class label.

Figure 6. Surrogate loss calculation for datapoint x (projected to w ·x) with a label prediction
of 4 for predictive purposes, the surrogate loss is instead obtained using potentials for the classes
based on w · x− 1 (label 2) and w · x + 1 (label 5) averaged together.
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Using a binary search procedure over η1, . . . , ηk−1, the largest lower bounding threshold for

each of these potentials can be obtained in O(log k) time.

2.4.2.3 Multiclass ordinal surrogate loss

In the multiclass feature representation, we have a set of feature weights wi for each label

and the adversarial multiclass ordinal surrogate loss can be written as:

ALord-mc(x, y) = max
i,j∈[k]

wi · x + wj · x + j − i
2

−wy · x. (2.35)

We can also view this as the maximization over k(k + 1)/2 linear hyperplanes. For an ordinal

regression problem with three classes, the loss has six facets with different shapes for each true

label value, as shown in Figure 7. In contrast with ALord-th, the class potentials for ALord-mc

may differ from one another in more-or-less arbitrary ways. Thus, searching for the maximal i

and j class labels requires O(k) time.

2.4.3 Ordinal Classification with Squared Loss

In some prediction tasks, the squared loss is the preferred metric for ordinal classification

to enforce larger penalty as the difference between the predicted and true label increases (Bac-

cianella et al., 2009; Pedregosa et al., 2017). The loss is calculated using the squared difference

between label prediction (ŷ ∈ Y) and ground truth label (y ∈ Y), that is: loss(ŷ, y) = (ŷ − y)2.

The adversarial surrogate loss for ordinal classification using the squared loss metric is defined

in Equation (2.14), where L is the squared loss matrix (e.g. Figure 1c for a five-class ordinal

classification). The constraints in Equation (2.14) form a convex polytope C. Below is an ex-
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Figure 7. Loss function contour plots of ALord over the space of potential differences ψj ,
fj − fy for the prediction task with three classes when the true label is y = 1 (a), y = 2 (b),
and y = 3 (c).

ample of the half-space representation of C for a four-class ordinal classification problem with

squared loss metric.

1st block

2nd block

3rd block



0 1 4 9 −1

1 0 1 4 −1

4 1 0 1 −1

9 4 1 0 −1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 1 1 1 0

−1 −1 −1 −1 0




q1

q2

q3

q4

v

 ≥



0

0

0

0

0

0

0

0

1

−1



. (2.36)

We define the adversarial surrogate loss for ordinal classification with squared loss ALsq as

stated in Theorem 2.5.
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Theorem 2.5. An adversarial ordinal classification predictor with squared loss is obtained by

choosing parameters θ that minimize the empirical risk of the surrogate loss function:

ALsq(f , y) = max

{
max
i,j,l∈[k]
i<l≤j

(2(j−l)+1)[fi+(l−i)2]+(2(l−i)−1)[fj+(j−l)2]
2(j−i) , max

i
fi

}
− fy. (2.37)

Proof. The ALsq above corresponds to the set of extreme points

D =

{[
q

v

]
= 2(j−l)+1

2(j−i)

[
ei

(l − i)2

]
+ 2(l−i)−1

2(j−i)

[
ej

(j − l)2

] ∣∣∣∣∣ i, j, l ∈ [k]

i < l ≤ j

}
∪

{[
q

v

]
=

[
ei

0

]∣∣∣∣∣ i ∈ [k]

}
.

(2.38)

This means q can either have one non-zero element with a probability of one or two non-zero

elements with the probability specified above.

Similar to the proof of Theorem 2.2, we next prove that D ⊇ ext C = {c ∈ C : rank(Ac) =

k + 1}, as D ⊆ C is again obvious. Given c ∈ ext C, suppose the set of rows that Ac selected

from the first and second block of A are S and T , respectively. Both S and T are subsets of

[k], indexed against A. We also denote the set of remaining indices as R = [k]\T .

In the case of the squared loss metric, we observe that every row in the first block of A can

be written as a linear combination of two other rows in the first block and the sum-to-one row

from the third block. This follows the corresponding relation in continuous squared functions:

(x− a)2 = x2− 2ax+ a2 = α(x2− 2bx+ b2) + β(x2− 2cx+ c2) + γ = α(x− b)2 + β(x− c)2 + γ,
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for some value of α, β, and γ. Therefore, S can only include one or two elements. This means

that R must also contain one or two elements. We consider these two cases:

1. S contains a single element {i}.

In this case, R must also be {i}. If R = {j} where j 6= i, the equation subsystem requires

v = L(i,:)q = (i − j)2 ≥ 1, since by definition of R, qj = 1 and ql = 0 for all l ∈ [k]\j.

However, this contradicts with the requirement of the j-th row of A that v ≤ L(j,:)q = 0.

Finally, it is easy to check that the vector in Rk+1 that meet all the equalities encoded in

this Ac is c =

[
ei

0

]
. Obviously, c ∈ D.

2. S contains two elements.

The rank condition requires that R must also contains two elements {i, j}. Consider these

following sub-cases:

a) S = {l − 1, l}, where i < l ≤ j.

Let c =

[
q

v

]
be the solution of the equalities encoded in this Ac. By definition

of R, ql = 0 for all q ∈ [k]\{i, j}. The value of qi and qj can be calculated by

solving L(l−1,:)q = L(l,:)q or equivalently L(l−1,i)qi + L(l−1,j)qj = L(l,i)qi + L(l,j)qj ,
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with the constraint that qi + qj = 1 and the non-negativity constraints. Solving for

this equation resulting in the following qi, qj , and v:

qi =
L(l−1,j) − L(l,j)

L(l,i) − L(l−1,i) + L(l−1,j) − L(l,j)
(2.39)

=
(j − l + 1)2 − (j − l)2

(l − i)2 − (l − 1− i)2 + (j − l + 1)2 − (j − l)2
=

2(j − l) + 1

2 (j − i)
, (2.40)

qj =
L(l,i) − L(l−1,i)

L(l,i) − L(l−1,i) + L(l−1,j) − L(l,j)
(2.41)

=
(l − i)2 − (l − 1− i)2

(l − i)2 − (l − 1− i)2 + (j − l + 1)2 − (j − l)2
=

2(l − i)− 1

2 (j − i)
, (2.42)

v =

(
L(l−1,j) − L(l,j)

)
L(l,i) +

(
L(l,i) − L(l−1,i)

)
L(l,j)

L(l,i) − L(l−1,i) + L(l−1,j) − L(l,j)
(2.43)

=
(2(j − l) + 1) (l − i)2 + (2(l − i)− 1) (j − l)2

2 (j − i)
. (2.44)

It is obvious that c ∈ D.

b) S = {m, l}, where i ≤ m < l ≤ j and m 6= l − 1.

We want to show that this case is impossible. Solving for the m-th and the l-th

equality, v = L(m,i)qi + L(m,j)qj = L(l,i)qi + L(l,j)qj resulting in qi = 1
z [(j −m)2 −

(j − l)2], qj = 1
z [(l − i)2 − (m− i)2], and

v = 1
z

{
(l − i)2[(j −m)2 − (j − l)2] + (j − l)2[(l − i)2 − (m− i)2]

}
, (2.45)

where z = [(j −m)2 − (j − l)2] + [(l − i)2 − (m− i)2].
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Let o be an index such that m < o < l. This row must exist since m 6= l − 1 and

m < l. Applying the solution above to the o-th row, we define:

w , L(o,:)q = 1
z

{
(o− i)2[(j −m)2 − (j − l)2] + (j − o)2[(l − i)2 − (m− i)2]

}
.

(2.46)

Then,

v − w =1
z

{
[(l − i)2 − (o− i)2][(j −m)2 − (j − l)2] (2.47)

− [(j − o)2 − (j − l)2][(l − i)2 − (m− i)2]
}
.

This means that v − w > 0, since for all i ≤ m < o < l ≤ j; i, j, l,m, o ∈ [k],

(l − i)2 − (o− i)2

(l − i)2 − (m− i)2
>

(j − o)2 − (j − l)2

(j −m)2 − (j − l)2
. (2.48)

Thus, it contradicts with the requirement that v ≤ L(o,:).

c) S = {m, l}, where m < i or l > j.

We first show that m < i is impossible. Note that for m < i, the loss value L(m,i) =

(i − m)2 > L(i,i) = 0 and L(m,j) = (j − m)2 > L(i,j) = (j − i)2. Noting that at

least one of qi or qj must be positive due to sum-to-one constraint, we conclude that

L(m,:)q > L(i,:)q. But this contradicts with L(m,:)q = v ≤ L(i,:)q since the m ∈ S.

Similarly, l > j is also impossible.
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Therefore, in all possible cases, we have shown that any c in ext C must be in D, which

concludes our proof.

Note that ALsq contains two separate maximizations corresponding to the case where there

are two non-zero elements of q and the case where only a single non-zero element of q is

possible. Unlike the surrogate for absolute loss, the maximization in ALsq cannot be realized

independently. A O(k3) algorithm is needed to compute the maximization for the case that

two non-zero elements of q are allowed, and a O(k) algorithm is needed to find the maximum

potential in the case of a single non-zero element of q. Therefore, the total runtime of the algo-

rithm for computing ALsq is O(k3). The loss surface of ALsq for the three classes classification

is shown in Figure 8.
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Figure 8. Loss function contour plots of ALsq over the space of potential differences ψj , fj−fy
for the prediction task with three classes when the true label is y = 1 (a), y = 2 (b), and y = 3
(c).
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2.4.4 Weighted Multiclass Loss

In more general prediction tasks, the penalty metric for each sample may be different. For

example, the predictor may need to prioritize samples with a particular characteristic. In

this subsection, we study the adversarial surrogate loss for weighted multiclass loss, and in

particular, the setting with a standard loss metrics weighted by parameter α (for example, the

weighted absolute loss: loss(ŷ, y) = α|ŷ − y|). We next analyze in Theorem 2.6 the extreme

points of the polytope formed by the the constraints in Equation (2.14) when L is the weighted

multiclass loss metric.

Theorem 2.6. Let q∗, and v∗ be the solution of the adversarial maximin (Equation (2.14))

with L as the loss matrix, then if the loss matrix is αL, the solution of (Equation (2.14)) is

q� = q∗, v� = αv∗.

Proof. Multiplying both sides of the constraints L(i,:)q ≥ v in Equation (2.14) and employing

αL(i,:)q ≥ αv, we arrive at an equivalent LP problem with the same solution. Therefore, if

we replace the original loss metric with αL, then the solution for q remain the same, and the

optimum slack variable value is αv∗.

Using Theorem 2.6, we can derive the adversarial surrogate loss for weighted multiclass

zero-one loss, absolute loss, and squared loss metrics as stated below.
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Corollary 2.1. An adversarial multiclass predictor with weighted zero-one loss is obtained by

choosing the parameter θ that minimizes the empirical risk of the surrogate loss function:

AL0-1-w(f , y, α) = max
S⊆[k], S 6=∅

∑
i∈S fi + α (|S| − 1)

|S|
− fy. (2.49)

Corollary 2.2. An adversarial ordinal classification predictor with weighted absolute loss is

obtained by choosing the parameter θ that minimizes the empirical risk of the surrogate loss

function:

ALord-w(f , y, α) = max
i,j∈[k]

fi + fj + α (j − i)
2

− fy. (2.50)

Corollary 2.3. An adversarial ordinal classification predictor with weighted squared loss is

obtained by choosing the parameter θ that minimizes the empirical risk of the surrogate loss

function:

ALsq-w(f , y, α) = max

{
max
i,j,l∈[k]
i<l≤j

(2(j−l)+1)[fi+α(l−i)2]+(2(l−i)−1)[fj+α(j−l)2]
2(j−i) , max

i
fi

}
− fy. (2.51)

The computational cost of calculating the adversarial surrogates for weighted multiclass loss

metric above is the same as that for the non-weighted counterpart of the loss, i.e., O(k log k)

for AL0-1-w, O(k) for ALord-w, and O(k3) for ALsq-w. The weight constant α does not change

the runtime complexity.
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2.4.5 Classification with Abstention

In some prediction tasks, it might be better for the predictor to abstain without making

any prediction rather than making a prediction with high uncertainty for borderline samples.

Under this setting, the standard zero-one loss is used for the evaluation metric with the addition

that the predictor can choose an abstain option and suffer a penalty of α. The adversarial

surrogate loss for classification with abstention is defined in Equation (2.14), where L is the

abstain loss matrix (e.g. Figure 1d for a five-class classification with α = 1
2). The constraints in

Equation (2.14) form a convex polytope C. Below is the example of the half-space representation

of the polytope for a four-class classification problem with abstention.

1st block

2nd block

3rd block



0 1 1 1 −1

1 0 1 1 −1

1 1 0 1 −1

1 1 1 0 −1

α α α α −1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 1 1 1 0

−1 −1 −1 −1 0




q1

q2

q3

q4

v

 ≥



0

0

0

0

0

0

0

0

0

1

−1



. (2.52)

Note that the first block of the coefficient matrix A has k+ 1 rows (one additional row for the

abstain option).
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We design a convex surrogate loss that can be generalized to the case where 0 ≤ α ≤ 1
2 .

We define the adversarial surrogate loss for classification with abstention ALabstain as stated in

Theorem 2.7 below.

Theorem 2.7. An adversarial predictor for classification with abstention with the penalty for

abstain option is α where 0 ≤ α ≤ 1
2 , is obtained by choosing the parameter θ that minimizes

the empirical risk of the surrogate loss function:

ALabstain(f , y, α) = max

{
max

i,j∈[k],i 6=j
(1− α) fi + αfj + α, max

i
fi

}
− fy. (2.53)

Proof. The ALabstain above corresponds to the set of extreme points

D =

{[
q

v

]
= (1− α)

[
ei

0

]
+ α

[
ej

1

] ∣∣∣∣∣ i, j ∈ [k]

i 6= j

}
∪

{[
q

v

]
=

[
ei

0

]∣∣∣∣∣ i ∈ [k]

}
. (2.54)

This means q can only have one non-zero element with probability of one or two non-zero

elements with the probability of α and (1− α).

Similar to the proof of Theorem 2.2, we next prove that D ⊇ ext C = {c ∈ C : rank(Ac) =

k + 1}, as D ⊆ C is again obvious. Given c ∈ ext C, suppose the set of rows that Ac selected

from the first and second block of A are S and T , respectively. Now S is a subset of [k + 1]

where the (k + 1)-th index represents the abstain option, while T is a subset of [k], indexed

against A. Similar to the case of zero-one loss metric, S and T must be disjoint. We also denote

the set of remaining indices as R = [k]\T .
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The abstain row in the first block of A implies that v ≤ α, while including j regular rows

to S implies that v = j−1
j . Therefore, only a single regular row can be in S when α < 1

2 or at

most two regular rows can be in S when α = 1
2 .

We first consider α < 1
2 . Let S = {i, k + 1}, i.e., one regular row and one abstain row.

Due to rank requirement of Ac and the disjointness of S and T , R must contain two elements

with one of them be i, i.e. R = {i, j}. To get the value of qi and qj , we solve for the equation

L(i,:)q = L(k+1,:)q which can be simplified as qj = αqi+αqj . The solution is to set qi = (1−α),

qj = α, and v = α, which obviously in D. For the second case, let S = {i}, i.e., one regular

row. In this case R must be {i} too. This yields c with qi = 1, qj = 0, ∀j ∈ [k]\i, and v = 0.

Obviously, c ∈ D.

For the case where α = 1
2 , two cases above still apply with two additional cases. First,

S = {i, j}, i.e., two regular rows. In this case, R must be {i, j} too. The solution is to set

qi = qj = 1
2 , and v = 1

2 . This satisfies v = L(i,:)q = L(j,:)q = 1
2 as well as v ≤ L(k+1,:)q = α = 1

2 .

Obviously, this is in D. Second, S = {i, j, k + 1}, i.e., two regular rows and one abstain row.

Due to the rank requirement of Ac, and the disjointness of S and T , R must contain three

elements: i, j, and another index l ∈ [k]\{i, j}. It is easy to check that the solution in this

case is also to set qi = qj = 1
2 , and v = 1

2 . This satisfies v = L(i,:)q = L(j,:)q = 1
2 as well as

v = L(k+1,:)q = α = 1
2 .

Therefore, in all possible cases, we have shown that any c in ext C must be in D.

We can view the maximization in ALabstain as the maximization over k2 linear hyperplanes,

with k hyperplanes are defined by the case where only a single element of q can be non-zero and
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the rest k(k−1) hyperplanes are defined by the case where two elements of q are non-zero. For

the binary classification with abstention problem, the surrogate loss function has four facets.

Figure 9 shows the loss function in the case where α = 1
3 and α = 1

2 . Note that for α = 1
2 the

facet corresponds with the hyperplane of (1−α)f1 +αf2 +α collide with the facet corresponds

with the hyperplane of (1− α)f2 + αf1 + α, resulting in a loss function with only three facets.

For the three-class classification with abstention problem, the surrogate loss has nine facets

with different shapes for each true label value, as shown in Figure 10 for α = 1
3 and α = 1

2 .

Similar to the binary classification case, for α = 1
2 , some facets in the surrogate loss surface

collide resulting in a surrogate loss function with only six facets.
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Figure 9. ALabstain evaluated over the space of potential differences (ψi,y = fi−fy; and ψi,i = 0)
for binary prediction tasks when the true label is y = 1, where α = 1

3 (a), and α = 1
2 (b).
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Figure 10. Loss function contour plots of ALabstain over the space of potential differences
ψj , fj−fy for the prediction task with three classes when the true label is y = 1, where α = 1

3
(a), and α = 1

2 (b).

Even though the maximization in ALabstain is over n2 different items, we construct a faster

algorithm to compute the loss. The algorithm keeps track of the two largest potentials as it

scans all k potentials. Denote i∗ and j∗ as the index of the largest and the second-largest

potentials respectively. The algorithm then takes the maximum of two candidate solutions:

(1) assigning all the probability to fi∗, resulting in the loss value of fi∗, or (2) assigning 1− α

probability to fi∗ and α probability to fj∗, resulting in the loss value of (1− α)fi∗ + αfj∗ + α.

The runtime of this algorithm is O(k) due to the need to scan all k potentials once.

2.4.6 General Multiclass Loss

For a general multiclass loss matrix L, the extreme points of the polytope defined by the

constraints in Equation (2.14) may not be easily characterized. Nevertheless, since the maxi-
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mization in Equation (2.14) is in the form of a linear program (LP), some well-known algorithms

for linear programming can be used to solve the problem. The techniques for solving LPs have

been extensively studied, resulting in two major algorithms:

1. Simplex algorithm.

The simplex algorithm (Dantzig, 1948; Dantzig, 1963) cleverly visits the extreme points

in the convex polytope until it reaches the one that maximizes the objective. This is

the most popular algorithm for solving LP problems. However, although the algorithm

typically works well in practice, the worst-case complexity of the algorithm is exponential

in the problem size.

2. Interior point algorithm.

(Karmarkar, 1984) proposed an interior point algorithm for solving LPs with polynomial

worst-case runtime complexity. The algorithm finds the optimal solution by traversing

the interior of the feasible region. The runtime complexity of Karmarkar’s algorithm for

solving the LP is O(n3.5) where n is the number of variables in the LP problem. In

Equation (2.14), n = k + 1.

Therefore, using Karmarkar’s algorithm we can bound the worst-case runtime complexity

of computing the adversarial surrogate for arbitrary loss matrix L with O(k3.5) where k is the

number of classes.

2.5 Prediction Formulation

The dual formulation of the adversarial prediction (Equation (2.6)) provides a way to con-

struct a learning algorithm for the framework. The learning step in the adversarial prediction
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is to find the optimal Lagrange dual variable θ∗ = argminθ EX,Y∼P̃ [AL(X, Y, θ)]. In the

prediction step, we use the optimal θ∗ to make a label prediction given newly observed data.

Although θ∗ is only optimized with respect to the conditional probability at the data points x in

the training set, we assume that it can be generalized to the true data generating distribution,

including the newly observed data points in the testing set.

2.5.1 Probabilistic Prediction

Given a new data point x and its label y, and the optimal θ∗, we formulate the prediction

minimax game based on Equation (2.6) by flipping the optimization order between the predictor

and the adversary player:

min
P̂ (Ŷ |x)

max
P̌ (Y̌ |x)

EŶ |x∼P̂ ;Y̌ |x∼P̌

[
loss(Ŷ , Y̌ ) + θ∗ᵀ

(
φ(x, Y̌ )− φ(x, y)

)]
. (2.55)

This flipping is enabled by the strong minimax duality theorem (Von Neumann and Morgen-

stern, 1945). Denoting fi = θ∗ᵀφ(x, i), the prediction formulation can be written in our vector

and matrix notation as:

min
p∈∆

max
q∈∆

pᵀLq + fᵀq− fy. (2.56)

Even though the ground truth label y serves an important role in the learning step (Equa-

tion (2.6)), it is constant with respect to the predictor probability p. Therefore, to get the
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optimal prediction probability p∗, the term fy in Equation (2.56) can be removed, resulting in

the following probabilistic prediction formulation:

p∗ = argmin
p∈∆

max
q∈∆

pᵀLq + fᵀq. (2.57)

2.5.2 Non-probabilistic Prediction

In some prediction tasks, a learning algorithm needs to provide a single class label pre-

diction rather than a probabilistic prediction. We propose two prediction schemes to get a

non-probabilistic single label prediction y∗ from our formulation.

1. The maximizer of the potential f .

This follows the standard prediction technique used by many ERM-based models, e.g.,

SVM. Given the best parameter θ∗, the predicted label is computed by choosing the label

that maximizes the potential value, i.e.,

y∗ = argmax
i

fi, where: fi = θ∗ᵀφ(x, i). (2.58)

Note that this prediction scheme works for the prediction settings where the predictor

employs the same set of class labels as the ground truth, i.e., y∗ ∈ Y and y ∈ Y where

Y = [k]. If they are different such as in the classification task with abstention, this

prediction scheme cannot be used. The runtime complexity of this prediction scheme is

O(k) for k classes.
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2. The maximizer of the predictor’s optimal probability p∗.

This prediction scheme requires the predictor to first produce a probabilistic prediction

by using Equation (2.57). Then the algorithm chooses the label that maximizes the

conditional probability, i.e.,

y∗ = argmax
i

p∗i , where: p∗ = argmin
p∈∆

max
q∈∆

pᵀLq + fᵀq. (2.59)

This prediction scheme can be applied to more general problems, including the case where

the predictor and ground truth class labels are chosen from different sets of labels. This is

useful for the classification task with abstention. However, for a general loss matrix L, this

prediction scheme is more computation intensive than the potential-based prediction, i.e.,

O(k3.5) due to the need of solving the minimax game by linear programming (Karmarkar’s

algorithm).

2.5.3 Prediction Algorithm for Classification with Abstention

In the task of classification with abstention, the standard prediction scheme using the po-

tential maximizer argmaxi fi cannot be applied due to the additional abstain option of the

predictor. In this subsection, we construct a fast prediction scheme that is based on the pre-

dictor’s optimal probability in the minimax game (Equation (2.57)) without the need to use
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general purpose LP solver. The minimax game in Equation (2.57) can be equivalently written

in the standard LP form as:

min
p,v

v (2.60)

s.t.: v ≥ L(:,i)
ᵀp + fi, ∀i ∈ [k]

p ∈ Rk+1
+ ,

pᵀ1 = 1,

where v is a slack variable to convert the inner maximization into linear constraints, and L(:,i)

denotes the i-th column of the loss matrix L. We aim to analyze the optimal p and v for the

case where L is the loss matrix for classification with abstention, e.g.,

L =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

α α α α

 (2.61)

in a four-class classification, where α is the penalty for abstaining (c.f. Section 2.4.5). Similar

to the case of the adversarial surrogate loss for classification with abstention, our analysis can

be generalized to the case where 0 ≤ α ≤ 1
2 .

Theorem 2.8. Let α be the penalty for abstaining where 0 ≤ α ≤ 1
2 , θ∗ be the learned parameter,

and f be the potential vector for all classes where fi = θ∗ᵀφ(x, i). Given a new data point x,

let i∗ = argmaxi fi (break tie arbitrarily), j∗ = argmaxj 6=i∗ fj, and ei∗ ∈ Rk be the i∗-th
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canonical vector. Then the predictor’s optimal probability p∗ of Equation (2.60) for the task of

classification with abstention can be directly computed as:

p∗ =

[
ei∗

0

]
if fi∗ − fj∗ ≥ 1 and p∗ =

[
(fi∗ − fj∗)ei∗
1− fi∗ + fj∗

]
if fi∗ − fj∗ < 1. (2.62)

Proof. Based on Theorem 2.7, the optimal objective value of Equation (2.60) is exactly the

value of ALabstain(f , y, α) + fy, which is fi∗ when fi∗ − fj∗ ≥ 1, and α + (1 − α)fi∗ + αfj∗

otherwise. So we only need to verify that the p∗ given in the theorem attains these two values,

or equivalently, maxi
{
L(:,i)

ᵀp∗ + fi
}

attains these two values.

1. Case 1: fi∗ − fj∗ ≥ 1. Now p∗ =

[
ei∗

0

]
renders L(:,i∗)

ᵀp∗+ fi∗ = fi∗ , and L(:,k)
ᵀp∗+ fk =

1 + fk ≤ fi∗ for all k 6= i∗. So the objective of Equation (2.60) matches ALabstain + fy.

2. Case 2: fi∗ − fj∗ < 1. Now p∗ =

[
(fi∗ − fj∗)ei∗
1− fi∗ + fj∗

]
∈ Rk+1

+ and 1ᵀp∗ = 1. Furthermore,

L(:,i∗)
ᵀp∗ + fi∗ = α(1− fi∗ + fj∗) + fi∗ ,

L(:,k)
ᵀp∗ + fk = fi∗ − fj∗ + α(1− fi∗ + fj∗) + fk ≤ α(1− fi∗ + fj∗) + fi∗ (k 6= i∗).

Therefore maxi
{
L(:,i)

ᵀp∗ + fi
}

= α(1− fi∗ + fj∗) + fi∗ , which matches ALabstain + fy.

From the theorem above, we derive a non-probabilistic prediction scheme based on the

maximizer of the predictor’s probability as follows.
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Corollary 2.4. For 0 ≤ α ≤ 1
2 , a non-probabilistic prediction of the adversarial prediction

method for the classification with abstention task can be computed as:

y∗ =


i∗ fi∗ − fj∗ ≥ 1

2

abstain otherwise

(2.63)

where i∗ and j∗ are the indices of the largest and the second largest potentials respectively.

The runtime complexity of this prediction scheme is O(k) since the algorithm needs to scan

all k potentials and maintain the two largest potentials. This is much faster than solving the

minimax game in Equation (2.57), which costs O(k3.5).

2.6 Fisher Consistency

The behavior of a prediction method in ideal learning settings—i.e., trained on the true eval-

uation distribution and given an arbitrarily rich feature representation, or, equivalently, con-

sidering the space of all measurable functions—provides a useful theoretical validation. Fisher

consistency requires that the prediction model yields the Bayes optimal decision boundary in

this setting (Tewari and Bartlett, 2007; Liu, 2007; Ramaswamy and Agarwal, 2012; Pedregosa

et al., 2017). Suppose the potential scoring function f(x, y) is optimized over the space of all

measurable functions. Given the true distribution P (X, Y ), a surrogate loss function δ is said
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to be Fisher consistent with respect to the loss ` if the minimizer f∗ of the surrogate loss reaches

the Bayes optimal risk, i.e.:

f∗ ∈ argmin
f

EY |x∼P [δf (x, Y )] ⇒ EY |x∼P [`f∗(x, Y )] = min
f

EY |x∼P [`f (x, Y )] . (2.64)

Here δf (x, y) stands for the surrogate loss function value if the true label is y and we make a

prediction on x using the potential function f(x, y). The loss `f has a similar meaning.

2.6.1 Fisher Consistency for Potential-Based Prediction

We consider Fisher consistency for standard multiclass classification where the prediction is

done by taking the argmax of the potentials, i.e., argmaxy f(x, y). This usually applies to the

setting where the predictor and ground truth class labels are chosen from the same set of labels,

i.e., y∗ ∈ Y, and y ∈ Y , [k]. Given that prediction is based on the argmax of the potentials,

the right-hand side of Equation (2.64) is equivalent to:

EY |x∼P

[
`(argmax

y′
f∗(x, y′), Y )

]
= min

f
EY |x∼P

[
`(argmax

y′
f(x, y′), Y )

]
. (2.65)

Since f is optimized over all measurable functions, the condition in Equation (2.64) can be

further simplified as

f∗ ∈ argmin
f

EY |x∼P [δf (x, Y )] (2.66)

⇒ argmax
y′

f∗(x, y′) ⊆ argmin
y′

EY |x∼P
[
`(y′, Y )

]
, ∀x ∈ X .
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Using the potential scoring function notation f(x, y), the adversarial surrogate loss in Equa-

tion (2.12) can be equivalently written as:

ALf (x, y) = max
P̌ (Y̌ |x)

min
P̂ (Ŷ |x)

EŶ |x∼P̂ ;Y̌ |x∼P̌

[
loss(Ŷ , Y̌ ) + f(x, Y̌ )− f(x, y)

]
. (2.67)

Then, the Fisher consistency condition for the adversarial surrogate loss ALf becomes:

f∗ ∈ F∗ , argmin
f

EY |x∼P [ALf (x, Y )] (2.68)

⇒ argmax
y

f∗(x, y) ⊆ Y� , argmin
y′

EY |x∼P [loss(y′, Y )].

In the sequel, we will show that the condition in Equation (2.68) holds for our adversarial

surrogate AL for any loss metrics satisfying a natural requirement that the correct prediction

must suffer a loss that is strictly less than incorrect predictions. We start in Theorem 2.9 by

establishing Fisher consistency when the optimal label is unique (i.e., Y� is a singleton), and

then proceed to more general cases in Theorem 2.10.

Theorem 2.9. In the standard multiclass classification setting, suppose we have a loss metric

that satisfies the natural requirement: loss(y, y) < loss(y, y′) for all y′ 6= y. Then the adversarial

surrogate loss ALf is Fisher consistent if f is optimized over all measurable functions and Y�

is a singleton.

Proof. Let p be the probability mass given by the predictor player P̂ (Ŷ |x), q be the probability

mass given by the adversary player P̌ (Y̌ |x), and d be the probability mass of the true distribu-
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tion P (Y |x). So, all p, q, and d lie in the k dimensional probability simplex ∆, where k is the

number of classes. Let L be a k-by-k loss matrix whose (y, y′)-th entry is loss(y, y′). Let f ∈ Rk

be the vector encoding of the value of f at all classes. The definition of f∗ in Equation (2.68)

now becomes:

f∗ ∈ argmin
f

max
q∈∆

min
p∈∆
{fᵀq + pᵀLq− dᵀf} = argmin

f
max
q∈∆

{
fᵀq + min

y
(Lq)y − dᵀf

}
. (2.69)

Since Y� , argminy EY |x∼P [loss(y, Y )] (or equivalently argminy(Ld)y) contains only a singleton,

we denote it as y�. We are to show that argmaxy f
∗(x, y) is a singleton, and its only element is

exactly y�. Since f∗ is an optimal solution, the objective function must have a zero subgradient

at f∗. That means 0 = q∗ − d, where q∗ is an optimal solution in Equation (2.69) under f∗.

As a result:

d ∈ argmax
q∈∆

{
qᵀf∗ + min

y
(Lq)y

}
. (2.70)

By the first order optimality condition of constrained convex optimization (see Eq. (4.21)

of (Boyd and Vandenberghe, 2004)), this means:

(
f∗ + L(y�,:)

ᵀ)ᵀ (u− d) ≤ 0 ∀u ∈ ∆, (2.71)

where L(y�,:) is the y�-th row of L, f∗+L(y�,:)
ᵀ is the gradient of the objective in Equation (2.70)

with respect to q evaluated at q = d. Here we used the definition of y�. However, this inequality
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can hold for some d ∈ ∆k ∩Rk++ only if f∗ + L(y�,:)
ᵀ is a uniform vector, i.e., f∗y + loss(y�, y) is

constant in y. To see this, let us assume the contrary that v , f∗ + L(y�,:)
ᵀ is not a uniform

vector, and let i be the index of its maximum element. Setting u = ei, it is clear that for any

d ∈ ∆k ∩Rk++, vᵀu > vᵀd and hence
(
f∗ + L(y�,:)

ᵀ
)ᵀ

(u−d) > 0, which violates the optimality

condition.

Finally, using the assumption that loss(y, y) < loss(y, y′) for all y′ 6= y, it follows that

argmaxy f
∗(x, y) = argminy L(y�,y) = {y�}.

The assumption of loss function in the above theorem is quite mild, requiring only that the

incorrect predictions suffer higher loss than the correct one. We do not even require symmetry

in its two arguments. The key to the proofs is the observation that for the optimal potential

function f∗, f∗(x, y) + loss(y�, y) is invariant to y when Y� = {y�}. We refer to this as the loss

reflective property of the minimizer. In the next theorem, we generalize Theorem 2.9 to the

case where the Bayes optimal prediction may have ties.

Theorem 2.10. In the standard multiclass classification setting, suppose we have a loss metric

that satisfies the natural requirement: loss(y, y) < loss(y, y′) for all y′ 6= y. Furthermore, if f

is optimized over all measurable functions, then:

(a) there exists f∗ ∈ F∗ such that argmaxy f
∗(x, y) ⊆ Y� (i.e., satisfies the Fisher consistency

requirement). In fact, all elements in Y� can be recovered by some f∗ ∈ F∗.
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(b) if the loss satisfies argminy′
∑

y∈Y� αyloss(y, y′) ⊆ Y� for all α(·) ≥ 0 and
∑

y∈Y� αy = 1,

then argmaxy f
∗(x, y) ⊆ Y� for all f∗ ∈ F∗. In this case, all f∗ ∈ F∗ satisfies the Fisher

consistency requirement.

Proof. Let p, q, and d have the same meaning as in the proof of Theorem 2.9. Let Y� ,

argminy(Ld)y which is not necessarily a singleton. The analysis in the proof of Theorem 2.9

carries over to this case, except for Equation (2.71). Denote h(q) , qᵀf∗ + miny(Lq)y. The

subdifferential of −h(q) evaluated at q = d is the set:

∂(−h)(d) = {−f∗ − v | v ∈ conv{L(y�,:)
ᵀ | y� ∈ Y�}}, (2.72)

where conv denotes the convex hull. By extending the first order optimality condition to the

subgradient case, this means that there is a subgradient g ∈ ∂(−h)(d) such that:

gᵀ(u− d) ≥ 0 ∀u ∈ ∆. (2.73)

Similar to the singleton Y� case, this inequality can hold for some d ∈ ∆∩Rk++ only if g is

a uniform vector. Based on Equation (2.72), −g− f∗ can be written as a convex combination of

{L(y�,:)
ᵀ | y� ∈ Y�}, and the “if and only if” relationship in the above derivation leads to a full

characterization of the optimal potential function set F∗x for a given x (c.f. Equation (2.68)):

F∗x =

f∗ = c1−
∑
y∈Y�

αyL(y,:)
ᵀ

∣∣∣∣∣∣ α(·) ≥ 0,
∑
y∈Y�

αy = 1, c ∈ R

 . (2.74)
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This means that multiple solutions of f∗ are possible. For each element y� in Y�, we can recover a

f∗y� in which the argmaxy f
∗
y�(x, y) contains a singleton element y� by using Equation (2.74) with

αy� = 1 and αy∈{Y�\y�} = 0. This is implied by our loss assumption that loss(y, y) < loss(y, y′)

for all y′ 6= y, and hence argmaxy f
∗
y�(x, y) = argminy L(y�,y). So (a) is proved.

We next prove (b). If we assume argminy′
∑

y∈Y� αyloss(y, y′) ⊆ Y� for all α(·) ≥ 0 and∑
y∈Y� αy = 1, then it follows trivially that argmaxy f

∗(x, y) ⊆ Y� for all f∗ ∈ F∗x.

2.6.2 Consistency for Prediction Based on the Predictor Player’s Probability

For a prediction task where the set of options a predictor can choose is different from the

set of ground truth labels (e.g., the classification task with abstention task in Section 2.5.3),

the analysis in the previous subsection cannot be applied. In this subsection we will establish

consistency properties of the adversarial prediction framework for a general loss matrix where

the prediction is based on the predictor player’s optimal probability.

Theorem 2.11. Given the true distribution P (Y |x) and a loss matrix L, finding the predictor’s

optimal probability in the adversarial prediction framework reduce to finding the Bayes optimal

prediction, assuming that f is allowed to be optimized over all measurable function.

Proof. Since the predictor can choose from l options which could be different than the k number

of classes in the ground truth, d and q lie in the k dimensional probability simplex ∆k, while

the predictor’s probability mass p lies in the l dimensional probability simplex ∆l. Let f ∈ Rk
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the vector encoding of the value of f at all classes. The potential function minimizer f∗ can

now be written as:

f∗ ∈ argmin
f

max
q∈∆k

min
p∈∆l

{fᵀq + pᵀLq− dᵀf} . (2.75)

As noted in our previous analysis, since f∗ is an optimal solution, the objective function

must have a zero subgradient at f∗. That means 0 = q∗ − d, where q∗ is an optimal solution

in Equation (2.75) under f∗.

Here we use the probabilistic prediction scheme as mentioned in Equation (2.57). The

consistency condition in Equation (2.64) requires that the loss of this prediction scheme under

the optimal potential f∗ and the true probability d reaches the Bayes optimal risk, i.e.,

p�ᵀLd = min
y

(Ld)y, where p� = argmin
p∈∆l

max
q∈∆k

pᵀLq + f∗ᵀq. (2.76)

Since the maximization over q in Equation (2.75) does not depend on dᵀf , we know that d

is also an optimal solution of argmaxq∈∆k minp∈∆l pᵀLq + f∗ᵀq. Then, based on the minimax

duality theorem (Von Neumann and Morgenstern, 1945), we know that:

p�ᵀLd + f∗ᵀd = min
p∈∆l

pᵀLd + f∗ᵀd. (2.77)

This implies that: p�ᵀLd = minp∈∆l pᵀLd = miny(Ld)y, which concludes our proof.
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2.7 Optimization

The goal of a learning algorithm in the adversarial prediction framework is to obtain the

optimal Lagrange dual variable θ that enforces the adversary’s probability distribution to reside

within the moment matching constraints in Equation (2.5). In the risk minimization perspective

(Equation (2.6)), it is equivalent to finding the parameter θ that minimizes the adversarial

surrogate loss (AL) in Equation (2.12). To find the optimal θ, we employ (sub)-gradient methods

to optimize our convex objective.

2.7.1 Subgradient-Based Convex Optimization

The risk minimization perspective of adversarial prediction framework (Equation (2.6)) can

be written as:

min
θ

EX,Y∼P̃ [AL(X, Y, θ)] (2.78)

where: AL(x, y, θ) = max
q∈∆

min
p∈∆

pᵀLq + θᵀ
[∑

j qjφ(x, j)− φ(x, y)
]
.

The subdifferential of the expected adversarial loss in the objective above is equal to the ex-

pected subdifferential of the loss for each sample (Rockafellar, 1970, Corollary 23.8):

∂θ EX,Y∼P̃ [AL(X, Y, θ)] = EX,Y∼P̃ [∂θ AL(X, Y, θ)] . (2.79)

Theorem 2.12 describes the subgradient of the adversarial surrogate loss with respect to θ.
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Theorem 2.12. Given θ, suppose the set of optimal q for the maximin inside the AL is Q∗:

Q∗ = argmax
q∈∆

min
p∈∆

{
pᵀLq + θᵀ

[∑
j qjφ(x, j)− φ(x, y)

]}
. (2.80)

Then the subdifferential of the adversarial loss AL(x, y, θ) with respect to the parameter θ can

be fully characterized by

∂θ AL(x, y, θ) = conv
{∑

j q
∗
jφ(x, j)− φ(x, y)

∣∣∣ q ∈ Q∗
}
. (2.81)

Proof. Denote ϕ(θ,q) , minp∈∆

{
pᵀLq + θᵀ

[∑
j qjφ(x, j)− φ(x, y)

]}
. Then for any fixed q,

ϕ(θ,q) is a closed proper convex function in θ. Denote g(θ) , maxq∈∆ ϕ(θ,q). Then the

interior of its domain int(dom g) is the entire Euclidean space of θ, and ϕ is continuous on

int(dom g)×∆. Using the obvious fact that ∂θϕ(θ,q) =
{∑

j qjφ(x, j)− φ(x, y)
}

, the desired

conclusion follows directly from Proposition A.22 of (Bertsekas, 1971).

The runtime complexity to calculate the subgradient of AL for one example above is O(k3.5)

due to the need to solve the inner minimiax using linear program (Karmarkar’s algorithm). For

the loss metrics that we have studied in Section 3 we construct faster ways to compute the

subgradient as follows.

Corollary 2.5. The subdifferential of AL0-1(x, y, θ) with respect to θ includes:

∂θ AL
0-1(x, y, θ) 3 1

|S∗|
∑

j∈S∗ φ(x, j)− φ(x, y), (2.82)
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where S∗ is an optimal solution set of the maximization inside the AL0-1, i.e.:

S∗ ∈ argmax
S⊆[k], S 6=∅

∑
j∈S θ

ᵀφ(x, j) + |S| − 1

|S|
. (2.83)

Corollary 2.6. The subdifferential of ALord(x, y, θ) with respect to θ includes:

∂θ AL
ord(x, y, θ) 3 1

2 (φ(x, i∗) + φ(x, j∗))− φ(x, y), (2.84)

where i∗, j∗ is the solution of:

(i∗, j∗) ∈ argmax
i,j∈[k]

θᵀφ(x, i) + θᵀφ(x, j) + j − i
2

. (2.85)

Corollary 2.7. The subdifferential of ALabstain(x, y, θ, α) where 0 ≤ α ≤ 1
2 with respect to θ

includes:

∂θ AL
abstain(x, y, θ, α) 3


(1− α)φ(x, i∗) + αφ(x, j∗)− φ(x, y) g(x, y, θ, α) > h(x, y, θ, α)

φ(x, l∗)− φ(x, y) otherwise,

(2.86)
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where:

g(x, y, θ, α) = max
i,j∈[k],i 6=j

(1− α) fi + αfj + α, h(x, y, θ, α) = max
l
fl, (2.87)

(i∗, j∗) ∈ argmax
i,j∈[k],i 6=j

(1− α) fi + αfj + α, l∗ = argmax
l

fl, (2.88)

and the potential fi is defined as fi = θᵀφ(x, i).

The runtime of the subgradient computation algorithms above are the same as the runtime

of computing the adversarial surrogate losses, i.e., O(k log k) for AL0-1, O(k) for ALord, and

O(k) for ALabstain. This is a significant speed-up compared to the technique that uses a linear

program solver.

Since we already have algorithms for computing the subgradient of AL, any subgradient

based optimization techniques can be used to optimize θ including some stochastic (sub)-

gradient techniques like SGD, AdaGrad, and ADAM or batch (sub)-gradient techniques like

L-BFGS. Some regularization techniques such as L1 and L2 regularizations, can also be added

to the objective function. The optimization is guaranteed to converge to the global optimum

as the objective is convex.

2.7.2 Incorporating Rich Feature Spaces via the Kernel Trick

Considering large feature spaces is important for developing an expressive classifier that

can learn from large amounts of training data. Indeed, Fisher consistency requires such feature

spaces for its guarantees to be meaningful. However, näıvely projecting from the original feature

space, φ(x, y), to a richer (or possibly infinite) feature space ω(φ(x, y)), can be computationally
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burdensome. Kernel methods enable this feature expansion by allowing the dot products of

certain feature functions to be computed implicitly, i.e., K(φ(xi, yi), φ(xj , yj)) = ω(φ(xi, yi)) ·

ω(φ(xj , yj)).

To formulate a learning algorithm for adversarial surrogate losses that can incorporate richer

feature spaces via kernel trick, we apply the PEGASOS algorithm (Shalev-Shwartz et al., 2011)

to our losses. Instead of optimizing the problem in the dual formulation as in many kernel

trick algorithms, PEGASOS allows us to incorporate the kernel trick into its primal stochastic

subgradient optimization technique. The algorithm works on L2 penalized risk minimization,

min
θ

EX,Y∼P̃
λ

2
‖θ‖2 +AL(X, Y, θ), (2.89)

where λ is the regularization penalty parameter. Since we want to perform stochastic opti-

mization, we replace the objective above with an approximation based on a single training

example:

λ

2
‖θ‖2 +AL(xit , yit , θ), (2.90)
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where it indicates the index of the example randomly selected at iteration t. Therefore, the

subgradient of our objective function with respect to the parameter θ at iteration t is:

∂
(t)
θ =λθ(t) +

∑
j q
∗
j

(t)φ(xit , j)− φ(xit , yit), (2.91)

where: q∗(t) = argmax
q∈∆

min
p∈∆

pᵀLq + f (t)ᵀq− f (t)
yit
,

f
(t)
j = θ(t)ᵀφ(xit , j).

The algorithm starts with zero initialization, i.e., θ(1) = 0 and uses a pre-determined learning

rate scheme η(t) = 1
λt to take optimization steps,

θ(t+1) = θ(t) − η(t)∂
(t)
θ = θ(t) − 1

λt∂
(t)
θ . (2.92)

Let us denote g(t) =
∑

j q
∗
j

(t)φ(xit , j)− φ(xit , yit) from Equation (2.91), then the update steps

can be written as:

θ(t+1) = (1− 1
t )θ

(t) − 1
λtg

(t). (2.93)

By accumulating the weighted contribution of g for each step, the value of θ at iteration t+ 1

is:

θ(t+1) = − 1

λt

t∑
l=1

g(l), (2.94)
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which can be expanded to the original formulation of our subgradient:

θ(t+1) = − 1

λt

t∑
l=1

k∑
j=1

q∗j
(l)φ(xil , j)− φ(xil , yil), (2.95)

where q∗(l) = argmax
q∈∆

min
p∈∆

pᵀLq + f (l)ᵀq− f (l)
yil
,

f
(l)
j = θ(l)ᵀφ(xil , j).

Let z be the one-hot vector representation of the ground truth label y where its elements

are zy = 1, and zj = 0 for all j 6= y. From the definition of g(t), let us denote r(t) = q∗(t) − zit ,

then g(t) can be equivalently written as g(t) =
∑

j rj
(t)φ(xit , j). We denote α

(t+1)
i as a vector

that accumulates the value of r for the i-th example each time it is selected until iteration t.

Then, the value of θ(t+1) in Equation (2.95) can be equivalently written as:

θ(t+1) =− 1

λt

n∑
i=1

k∑
j=1

α
(t+1)
(i,j) φ(xi, j), (2.96)

where α
(t+1)
(i,j) indicates the j-th element of the vector α

(t+1)
i . Using this notation, the potentials

f (t) used to calculate the adversarial loss can be computed as:

f
(t)
j = θ(t)ᵀφ(xit , j) =− 1

λt

n∑
i′

k∑
j′

α
(t)
(i′,j′) φ(xi′ , j

′) · φ(xit , j). (2.97)

Note that the computation of the potentials above only depends on the dot product between

the feature functions weighted by the α variables.



76

Since the algorithm only depends on the dot products, to incorporate a richer feature spaces

ω(φ(x, y)), we can directly apply kernel function in the computation of the potentials,

f
(t)
j = θ(t)ᵀω(φ(xit , j)) =− 1

λt

n∑
i′

k∑
j′

α
(t)
(i′,j′)ω(φ(xi′ , j

′)) · ω(φ(xit , j)) (2.98)

=− 1

λt

n∑
i′

k∑
j′

α
(t)
(i′,j′)K(φ(xi′ , j

′), φ(xit , j)). (2.99)

The detailed algorithm for our adversarial surrogate loss is described in Algorithm 1.

Algorithm 1 PEGASOS algorithm for adversarial surrogate losses with kernel trick

1: Input: Training data (x1, y1), . . . (xn, yn), L, λ, T, k

2: α
(1)
i ← 0, ∀i ∈ {1, . . . , n}

3: Let zi be the one-hot encoding of yi for all i ∈ {1, . . . , n}
4: for t← 1, 2, . . . , T do
5: Choose it ∈ {1, . . . , n} uniformly at random

6: Compute f (t), where f
(t)
j ← −

1
λt

∑n
i′
∑k

j′ α
(t)
(i′,j′)K(φ(xi′ , j

′), φ(xit , j))

7: q∗(t) ← argmaxq∈∆ minp∈∆ pᵀLq + f (t)ᵀq− f (t)
yit

8: α
(t+1)
it

← α
(t)
it

+ q∗(t) − zit
9: end for
10: return α

(t+1)
i , ∀i ∈ {1, . . . , n}

2.8 Experiments

We conduct experiments on real data to investigate the empirical performance of the ad-

versarial surrogate losses in several prediction tasks.
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2.8.1 Experiments for Multiclass Zero-One Loss Metric

We evaluate the performance of the AL0-1 classifier and compare it with the three most

popular multiclass SVM formulations: the WW (Weston et al., 1999), the CS (Crammer and

Singer, 2002), and the LLW (Lee et al., 2004). We use 12 datasets from the UCI machine learning

repository (Lichman, 2013) with various sizes and numbers of classes (details in Table I). For

each dataset, we consider the methods using the original feature space (linear kernel) and a

kernelized feature space using the Gaussian radial basis function kernel.

TABLE I. Properties of the datasets for the zero-one loss metric experiments.

Dataset
Properties

#class #train # test #feature

(1) iris 3 105 45 4
(2) glass 6 149 65 9
(3) redwine 10 1119 480 11
(4) ecoli 8 235 101 7
(5) vehicle 4 592 254 18
(6) segment 7 1617 693 19
(7) sat 7 4435 2000 36
(8) optdigits 10 3823 1797 64
(9) pageblocks 5 3831 1642 10
(10) libras 15 252 108 90
(11) vertebral 3 217 93 6
(12) breasttissue 6 74 32 9
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For our experimental methodology, we first make 20 random splits of each dataset into

training and testing sets. We then perform two-stage, five-fold cross validation on the training

set of the first split to tune each model’s parameter C and the kernel parameter γ under the

kernelized formulation. In the first stage, the values for C are 2i, i = {0, 3, 6, 9, 12} and the values

for γ are 2i, i = {−12,−9,−6,−3, 0}. We select final values for C from 2iC0, i = {−2,−1, 0, 1, 2}

and values for γ from 2iγ0, i = {−2,−1, 0, 1, 2} in the second stage, where C0 and γ0 are the

best parameters obtained in the first stage. Using the selected parameters, we train each model

on the 20 training sets and evaluate the performance on the corresponding testing set. We

use the Shark machine learning library (Igel et al., 2008) for the implementation of the three

multiclass SVM formulations.

We report the accuracy of each method averaged over the 20 dataset splits for both linear

feature representations and Gaussian kernel feature representations in Table II. We denote the

results that are either the best of all four methods or not worse than the best with statistical

significance (under the non-parametric Wilcoxon signed-rank test with α = 0.05) using bold

font. We also show the accuracy averaged over all of the datasets for each method and the

number of datasets for which each method is “indistinguishably best” (bold numbers) in the

last row. As we can see from the table, the only alternative model that is Fisher consistent—

the LLW model—performs poorly on all datasets when only linear features are employed. This

matches with previous experimental results conducted by (Doğan et al., 2016) and demonstrates

a weakness of using an absolute margin for the loss function (rather than the relative margins of

all other methods). The AL0-1 classifier performs competitively with the WW and CS models
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TABLE II. The mean and (in parentheses) standard deviation of the accuracy for each model
with linear kernel and Gaussian kernel feature representations. Bold numbers in each case
indicate that the result is the best or not significantly worse than the best (Wilcoxon signed-
rank test with α = 0.05).

D
Linear Kernel Gaussian Kernel

AL0-1 WW CS LLW AL0-1 WW CS LLW

(1) 96.3 (3.1) 96.0 (2.6) 96.3 (2.4) 79.7 (5.5) 96.7 (2.4) 96.4 (2.4) 96.2 (2.3) 95.4 (2.1)
(2) 62.5 (6.0) 62.2 (3.6) 62.5 (3.9) 52.8 (4.6) 69.5 (4.2) 66.8 (4.3) 69.4 (4.8) 69.2 (4.4)
(3) 58.8 (2.0) 59.1 (1.9) 56.6 (2.0) 57.7 (1.7) 63.3 (1.8) 64.2 (2.0) 64.2 (1.9) 64.7 (2.1)
(4) 86.2 (2.2) 85.7 (2.5) 85.8 (2.3) 74.1 (3.3) 86.0 (2.7) 84.9 (2.4) 85.6 (2.4) 86.0 (2.5)
(5) 78.8 (2.2) 78.8 (1.7) 78.4 (2.3) 69.8 (3.7) 84.3 (2.5) 84.4 (2.6) 83.8 (2.3) 84.4 (2.6)
(6) 94.9 (0.7) 94.9 (0.8) 95.2 (0.8) 75.8 (1.5) 96.5 (0.6) 96.6 (0.5) 96.3 (0.6) 96.4 (0.5)
(7) 84.9 (0.7) 85.4 (0.7) 84.7 (0.7) 74.9 (0.9) 91.9 (0.5) 92.0 (0.6) 91.9 (0.5) 91.9 (0.4)
(8) 96.6 (0.6) 96.5 (0.7) 96.3 (0.6) 76.2 (2.2) 98.7 (0.4) 98.8 (0.4) 98.8 (0.3) 98.9 (0.3)
(9) 96.0 (0.5) 96.1 (0.5) 96.3 (0.5) 92.5 (0.8) 96.8 (0.5) 96.6 (0.4) 96.7 (0.4) 96.6 (0.4)
(10) 74.1 (3.3) 72.0 (3.8) 71.3 (4.3) 34.0 (6.4) 83.6 (3.8) 83.8 (3.4) 85.0 (3.9) 83.2 (4.2)
(11) 85.5 (2.9) 85.9 (2.7) 85.4 (3.3) 79.8 (5.6) 86.0 (3.1) 85.3 (2.9) 85.5 (3.3) 84.4 (2.7)
(12) 64.4 (7.1) 59.7 (7.8) 66.3 (6.9) 58.3 (8.1) 68.4 (8.6) 68.1 (6.5) 66.6 (8.9) 68.0 (7.2)

avg 81.59 81.02 81.25 68.80 85.14 84.82 85.00 84.93
#b 9 7 8 0 9 7 7 8

with slight advantages on overall average accuracy and a larger number of “indistinguishably

best” performances on datasets—or, equivalently, fewer statistically significant losses to any

other method.

The kernel trick in the Gaussian kernel case provides access to much richer feature spaces,

improving the performance of all models, and the LLW model especially. In general, all mod-

els provide competitive results in the Gaussian kernel case. The AL0-1 classifier maintains a

similarly slight advantage and only provides performance that is sub-optimal (with statistical

significance) in three of the twelve datasets versus six of twelve and five of twelve for the other
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methods. We conclude that the multiclass adversarial method performs well in both low and

high dimensional feature spaces. Recalling the theoretical analysis of the adversarial method, it

is a well-motivated (from the adversarial zero-one loss minimization) multiclass classifier that

enjoys both strong theoretical properties (Fisher consistency) and empirical performance.

2.8.2 Experiments for Multiclass Ordinal Classification

We conduct our ordinal classification experiments on a benchmark dataset for ordinal re-

gression (Chu and Ghahramani, 2005), evaluate the performance using mean absolute error

(MAE), and perform statistical tests on the results of different hinge loss surrogate methods.

The benchmark contains datasets taken from the UCI machine learning repository (Lichman,

2013), which range from relatively small to relatively large datasets. The characteristic of the

datasets, i.e., the number of classes, the training set size, the testing set size, and the number

of features is described in Table III.

In the experiment, we consider the methods using the original feature space and using a

Gaussian radial basis function kernel feature space. The methods that we compare include two

variations of our approach, the threshold based (ALord-th), and the multiclass-based (ALord-mc).

The baselines we use for the threshold-based models include an SVM-based reduction framework

algorithm (REDth) (Li and Lin, 2007), the all threshold method with hinge loss (AT) (Shashua

and Levin, 2003; Chu and Keerthi, 2005), and the immediate threshold method with hinge loss

(IT) (Shashua and Levin, 2003; Chu and Keerthi, 2005). For the multiclass-based models, we

compare our method with an SVM-based reduction framework algorithm using multiclass fea-

tures (REDmc) (Li and Lin, 2007), cost-sensitive one-sided support vector regression (CSOSR)
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TABLE III. Properties of the datasets for the ordinal classification experiments.

Dataset #class #train #test #features

diabetes 5 30 13 2
pyrimidines 5 51 23 27
triazines 5 130 56 60
wisconsin 5 135 59 32
machinecpu 10 146 63 6
autompg 10 274 118 7
boston 5 354 152 13
stocks 5 665 285 9
abalone 10 2923 1254 10
bank 10 5734 2458 8
computer 10 5734 2458 21
calhousing 10 14447 6193 8

(Tu and Lin, 2010), cost-sensitive one-versus-one SVM (CSOVO) (Lin, 2014), and cost-sensitive

one-versus-all SVM (CSOVA) (Lin, 2008). For our Gaussian kernel experiment, we compare

our threshold-based model (ALord-th) with SVORIM and SVOREX (Chu and Keerthi, 2005).

In our experiments, we first make 20 random splits of each dataset into training and testing

sets. We performed two stages of five-fold cross validation on the first split training set for

tuning each model’s regularization constant λ. In the first stage, the possible values for λ are

2−i, i = {1, 3, 5, 7, 9, 11, 13}. Using the best λ in the first stage, we set the possible values for λ in

the second stage as 2
i
2λ0, i = {−3,−2,−1, 0, 1, 2, 3}, where λ0 is the best parameter obtained in

the first stage. Using the selected parameter from the second stage, we train each model on the

20 training sets and evaluate the MAE performance on the corresponding testing set. We then

perform a statistical test to find whether the performance of a model is different with statistical
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significance from other models. Similarly, we perform the Gaussian kernel experiments with

the same model parameter settings as in the multiclass zero-one experiments.

We report the mean absolute error (MAE) averaged over the dataset splits as shown in

Table IV and Table V. We highlight the results that are either the best or not worse than

the best with statistical significance (under the non-parametric Wilcoxon signed-rank test with

α = 0.05) in boldface font. We also provide the summary for each model in terms of the

averaged MAE over all datasets and the number of datasets for which each model marked with

boldface font in the bottom of the table.

As we can see from Table IV, in the experiment with the original feature space, threshold-

based models perform well on relatively small datasets, whereas multiclass-based models per-

form well on relatively large datasets. A possible explanation for this result is that multiclass-

based models have more flexibility in creating decision boundaries, hence perform better if

the training data size is sufficient. However, since multiclass-based models have many more

parameters than threshold-based models (mk parameters rather than m + k − 1 parameters),

multiclass methods may need more data, and hence, may not perform well on relatively small

datasets.

In the threshold-based models’ comparison, ALord-th, REDth, and AT perform competitively

on relatively small datasets like triazines, wisconsin, machinecpu, and autompg. ALord-th

has a slight advantage over REDth on the overall accuracy, and a slight advantage over AT on

the number of “indistinguishably best” performance on all datasets. We can also see that AT

is superior to IT in the experiments under the original feature space. Among the multiclass-
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TABLE IV. The average and (in parenthesis) standard deviation of the mean absolute error
(MAE) for each model. Bold numbers in each case indicate that the result is the best or not
significantly worse than the best (Wilcoxon signed-rank test with α = 0.05).

Dataset
Threshold-based models Multiclass-based models

ALord-th REDth AT IT ALord-mc REDmc CSOSR CSOVO CSOVA

diabetes
0.696
(0.13)

0.715
(0.19)

0.731
(0.15)

0.827
(0.28)

0.692
(0.14)

0.700
(0.15)

0.715
(0.19)

0.738
(0.16)

0.762
(0.19)

pyrimidines
0.654
(0.12)

0.678
(0.15)

0.615
(0.3)

0.626
(0.14)

0.509
(0.12)

0.565
(0.13)

0.520
(0.13)

0.576
(0.16)

0.526
(0.16)

triazines
0.607
(0.09)

0.683
(0.11)

0.649
(0.11)

0.654
(0.12)

0.670
(0.09)

0.673
(0.11)

0.677
(0.10)

0.738
(0.10)

0.732
(0.10)

wisconsin
1.077
(0.11)

1.067
(0.12)

1.097
(0.11)

1.175
(0.14)

1.136
(0.11)

1.141
(0.10)

1.208
(0.12)

1.275
(0.15)

1.338
(0.11)

machinecpu
0.449
(0.09)

0.456
(0.09)

0.458
(0.09)

0.467
(0.10)

0.518
(0.11)

0.515
(0.10)

0.646
(0.10)

0.602
(0.09)

0.702
(0.14)

autompg
0.551
(0.06)

0.550
(0.06)

0.550
(0.06)

0.617
(0.07)

0.599
(0.06)

0.602
(0.06)

0.741
(0.07)

0.598
(0.06)

0.731
(0.07)

boston
0.316
(0.03)

0.304
(0.03)

0.306
(0.03)

0.298
(0.04)

0.311
(0.03)

0.311
(0.04)

0.353
(0.05)

0.294
(0.04)

0.363
(0.04)

stocks
0.324
(0.02)

0.317
(0.02)

0.315
(0.02)

0.324
(0.02)

0.168
(0.02)

0.175
(0.03)

0.204
(0.02)

0.147
(0.02)

0.213
(0.02)

abalone
0.551
(0.02)

0.547
(0.02)

0.546
(0.02)

0.571
(0.02)

0.521
(0.02)

0.520
(0.02)

0.545
(0.02)

0.558
(0.02)

0.556
(0.02)

bank
0.461
(0.01)

0.460
(0.01)

0.461
(0.01)

0.461
(0.01)

0.445
(0.01)

0.446
(0.01)

0.732
(0.02)

0.448
(0.01)

0.989
(0.02)

computer
0.640
(0.02)

0.635
(0.02)

0.633
(0.02)

0.683
(0.02)

0.625
(0.01)

0.624
(0.02)

0.889
(0.02)

0.649
(0.02)

1.055
(0.02)

calhousing
1.190
(0.01)

1.183
(0.01)

1.182
(0.01)

1.225
(0.01)

1.164
(0.01)

1.144
(0.01)

1.237
(0.01)

1.202
(0.01)

1.601
(0.02)

average 0.626 0.633 0.629 0.661 0.613 0.618 0.706 0.652 0.797
# bold 5 5 4 2 5 5 2 2 2
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based models, ALord-mc and REDmc perform competitively on datasets like abalone, bank, and

computer, with a slight advantage of ALord-mc model on the overall accuracy. In general, the

cost-sensitive models perform poorly compared with ALord-mc and REDmc. A notable exception

is the CSOVO model which perform very well on the stocks, and boston datasets.

TABLE V. The mean and (in parenthesis) standard deviation of the MAE for models with
Gaussian kernel. Bold numbers in each case indicate that the result is the best or not signifi-
cantly worse than the best (Wilcoxon signed-rank test with α = 0.05).

Dataset ALord-th SVORIM SVOREX

diabetes 0.696 (0.13) 0.665 (0.14) 0.688 (0.18)
pyrimidines 0.478 (0.11) 0.539 (0.11) 0.550 (0.11)
triazines 0.608 (0.08) 0.612 (0.09) 0.604 (0.08)
wisconsin 1.090 (0.10) 1.113 (0.12) 1.049 (0.09)
machinecpu 0.452 (0.09) 0.652 (0.12) 0.628 (0.13)
autompg 0.529 (0.04) 0.589 (0.05) 0.593 (0.05)
boston 0.278 (0.04) 0.324 (0.03) 0.316 (0.03)
stocks 0.103 (0.02) 0.099 (0.01) 0.100 (0.02)

average 0.531 0.574 0.566
# bold 8 3 4

In the Gaussian kernel experiment, we can see from Table V that the kernelized version of

ALord-th performs significantly better than the threshold-based models SVORIM and SVOREX

in terms of both the overall accuracy and the number of “indistinguishably best” performance

on all datasets. We also note that immediate-threshold-based model (SVOREX) performs
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better than all-threshold-based model (SVORIM) in our experiment using Gaussian kernel. We

can conclude that our proposed adversarial losses for ordinal regression perform competitively

compared to the state-of-the-art ordinal regression models using both original feature spaces

and kernel feature spaces with a significant performance improvement in the Gaussian kernel

experiments.

2.8.3 Experiments for Multiclass Classification with Abstention

We conduct experiments for classification with abstention tasks using the same dataset as in

the multiclass zero-one experiments (Table I). We compare the performance of our adversarial

surrogate loss (ALabstain) with the SVM’s one-vs-all (OVA) and Crammer & Singer (CS) formu-

lations for classification with abstention (Ramaswamy et al., 2018). We evaluate the prediction

performance for a k-class classification using the abstention loss:

loss(ŷ, y) =


α ŷ = k + 1

I(ŷ 6= y) otherwise,

(2.100)

where ŷ = k + 1 indicates an abstain prediction, and α is a fixed value for the penalty for

making abstain prediction. Throughout the experiments, we use the standard value of α = 1
2 .

Similar to the setup in the previous experiments, we make 20 random splits of each dataset

into training and testing sets. We then perform two-stage, five-fold cross validation on the

training set of the first split to tune each model’s parameter (C or λ) and the kernel parameter

γ under the kernelized formulation. Using the selected parameters, we train each model on

the 20 training sets and evaluate the performance on the corresponding testing set. In the
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prediction step, we use a non-probabilistic prediction scheme for ALabstain as presented in

Corollary 2.4. For the baseline methods, we use a threshold base prediction scheme as presented

in (Ramaswamy et al., 2018) with the default value of the threshold τ for each model (τ = 0.5

for the SVM-CS, and τ = 0 for the SVM-OVA).

We report the abstention loss averaged over the dataset splits as shown in Table VI. We

highlight the results that are either the best or not worse than the best with statistical signif-

icance (under the non-parametric Wilcoxon signed-rank test with α = 0.05) in boldface font.

We also report the average percentage of abstain predictions produced by each model in each

dataset. Finally, we provide the summary for each model in terms of the averaged abstention

loss over all datasets and the number of datasets for which each model is marked with boldface

font in the bottom of the table.

The results from Table VI indicates that all models output more abstain predictions in the

case of the dataset with higher noise (i.e., bigger value of loss). The percentage of abstain

predictions of ALabstain, SVM-OVA, and SVM-CS are fairly similar. In some datasets like

segment and pageblocks, all models output very rarely abstain, whereas in some datasets like

redwine and breasttissue, some of the models abstain for more than 50% of the total number

of testing examples. The results show that this percentage does not depend on the number

of classes. For example, both redwine and optdigits are 10-class classification problems.

However, the percentage of abstain prediction for optdigits is far less than the one for redwine.

In the linear kernel experiments, the ALabstain performs best compared the baselines in

terms of the overall abstention loss and the number of “indistinguishably best” performance,
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TABLE VI. The mean and (in parentheses) standard deviation of the abstention loss, and (in
square bracket) the percentage of abstain predictions for each model with linear kernel and
Gaussian kernel feature representations. Bold numbers in each case indicate that the result is
the best or not significantly worse than the best (Wilcoxon signed-rank test with α = 0.05).

Dataset
Linear Kernel Gaussian Kernel

ALabstain OVA CS ALabstain OVA CS

iris
0.037 (0.02)

[7%]
0.122 (0.04)

[13%]
0.038 (0.02)

[6%]
0.051 (0.03)

[6%]
0.120 (0.04)

[14%]
0.043 (0.03)

[1%]

glass
0.380 (0.04)

[40%]
0.393 (0.04)

[27%]
0.379 (0.04)

[38%]
0.302 (0.03)

[37%]
0.393 (0.04)

[35%]
0.317 (0.03)

[25%]

redwine
0.418 (0.01)

[58%]
0.742 (0.04)

[50%]
0.423 (0.01)

[54%]
0.373 (0.01)

[42%]
0.742 (0.04)

[50%]
0.391 (0.01)

[58%]

ecoli
0.165 (0.02)

[17%]
0.222 (0.10)

[11%]
0.213 (0.10)

[15%]
0.160 (0.03)

[17%]
0.221 (0.10)

[11%]
0.144 (0.02)

[5%]

vehicle
0.214 (0.02)

[23%]
0.231 (0.02)

[17%]
0.216 (0.02)

[20%]
0.206 (0.03)

[20%]
0.226 (0.03)

[15%]
0.300 (0.02)

[31%]

segment
0.061 (0.01)

[7%]
0.082 (0.01)

[11%]
0.052 (0.01)

[6%]
0.042 (0.01)

[5%]
0.084 (0.01)

[11%]
0.102 (0.01)

[13%]

sat
0.147 (0.01)

[14%]
0.356 (0.01)

[20%]
0.337 (0.01)

[14%]
0.094 (0.01)

[9%]
0.356 (0.01)

[20%]
0.181 (0.01)

[4%]

optdigits
0.037 (0.01)

[4%]
0.045 (0.01)

[5%]
0.038 (0.01)

5%
0.062 (0.01)

[12%]
0.051 (0.01)

[5%]
0.072 (0.01)

[8%]

pageblocks
0.040 (0.01)

[3%]
0.042 (0.01)

[1%]
0.045 (0.02)

[4%]
0.037 (0.01)

[4%]
0.042 (0.01)

[1%]
0.060 (0.01)

[4%]

libras
0.260 (0.03)

[36%]
0.253 (0.02)

[36%]
0.253 (0.02)

[36%]
0.263 (0.02)

[50%]
0.362 (0.04)

[4%]
0.207 (0.03)

[14%]

vertebral
0.154 (0.02)

[16%]
0.147 (0.02)

[7%]
0.159 (0.02)

[14%]
0.181 (0.02)

[22%]
0.147 (0.03)

[7%]
0.220 (0.04)

[4%]

breasttissue
0.315 (0.04)

[51%]
0.316 (0.05)

[37%]
0.326 (0.06)

[32%]
0.330 (0.04)

[54%]
0.313 (0.06)

[32%]
0.367 (0.03)

[67%]

average 0.186 0.246 0.207 0.175 0.255 0.200
# bold 10 4 8 8 3 4
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followed by SVM-CS and then SVM-OVA. The ALabstain has a slight advantage compared with

the SVM-CS in most of the datasets in the linear kernel experiments except in few datasets that

the ALabstain outperfoms the SVM-CS by significant margins. Overall, the SVM-OVA performs

poorly on most datasets except in a few datasets (libras, vertebral, and breasttissue).

The introduction of non-linearity via the Gaussian kernel improves the performance of both

ALabstain and SVM-CS as we see from Table VI. The ALabstain method maintains its advantages

over the baselines in terms of the overall abstention loss and the number of “indistinguishably

best” performances. We can conclude that ALabstain performs competitively compared to the

baseline models using both original feature spaces and the Gaussian kernel feature spaces. We

note that these competitive advantages do not have any drawbacks in terms of the computa-

tional cost compared to the baselines. As described in Section 3.5 and Section 4.3, the surrogate

loss function and prediction rule are relatively simple and easy to compute.

2.9 Conclusions and Future Works

In this section, we proposed an adversarial prediction framework for general multiclass

classification that seeks a predictor distribution that robustly optimizes non-convex and non-

continuous multiclass loss metrics against the worst-case conditional label distributions (the

adversarial distribution) constrained to (approximately) match the statistics of the training

data. The dual formulation of the framework resembles a risk minimization model with a

convex surrogate loss we call the adversarial surrogate loss. These adversarial surrogate losses

provide desirable properties of surrogate losses for multiclass classification. For example, in the

case of multiclass zero-one classification, our surrogate loss fills the long-standing gap in multi-
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class classification by simultaneously: guaranteeing Fisher consistency, enabling computational

efficiency via the kernel trick, and providing competitive performance in practice. Our formu-

lations for the ordinal classification problem provide novel consistent surrogate losses that have

not previously been considered in the literature. Lastly, our surrogate loss for the classification

with abstention problem provides a unique consistent method that is applicable to binary and

multiclass problems, fast to compute, and also competitive in practice.

In general, we showed that the adversarial surrogate losses for general multiclass classifi-

cation problems enjoy the nice theoretical property of Fisher consistency. We also developed

efficient algorithms for optimizing the surrogate losses and a way to incorporate rich feature

representation via kernel tricks. Finally, we demonstrated that the adversarial surrogate losses

provide competitive performance in practice on several datasets taken from UCI machine learn-

ing repository. We will investigate the adversarial prediction framework for more general loss

metrics (e.g., multivariate loss metrics), and also for different prediction settings (e.g., active

learning and multitask learning) in our future works.



CHAPTER 3

PERFORMANCE-ALIGNED ADVERSARIAL GRAPHICAL MODELS

(This chapter was previously published as “Distributionally Robust Graphical Models”

(Fathony et al., 2018b) in the Advances in Neural Information Processing Systems 31 (NeurIPS

2018).)

3.1 Introduction

Learning algorithms must consider complex relationships between variables to provide use-

ful predictions in many structured prediction problems. These complex relationships are often

represented using graphs to convey the independence assumptions being employed. For exam-

ple, chain structures are used when modeling sequences like words and sentences (Manning and

Schütze, 1999), tree structures are popular for natural language processing tasks that involve

prediction for entities in parse trees (Cohn and Blunsom, 2005; Hatori et al., 2008; Sadeghian

et al., 2016), and lattice structures are often used for modeling images (Nowozin et al., 2011).

The most prevalent methods for learning with graphical structure are probabilistic graphical

models (e.g., conditional random fields (CRFs) (Lafferty et al., 2001)) and large margin models

(e.g., structured support vector machines (SSVMs) (Tsochantaridis et al., 2005) and maximum

margin Markov networks (M3Ns) (Taskar et al., 2005a)). Both types of models have unique

advantages and disadvantages. CRFs with sufficiently expressive feature representation are con-

sistent estimators of the marginal probabilities of variables in cliques of the graph (Li, 2009),

90
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but are oblivious to the evaluative loss metric during training. On the other hand, SSVMs di-

rectly incorporate the evaluative loss metric in the training optimization, but lack consistency

guarantees for multiclass settings (Tewari and Bartlett, 2007; Liu, 2007).

To address these limitations, we propose adversarial graphical models (AGM), a distribu-

tionally robust framework for leveraging graphical structure among variables that provides both

the flexibility to incorporate customized loss metrics during training as well as the statistical

guarantee of Fisher consistency for a chosen loss metric. Our approach is based on a robust

adversarial formulation (Topsøe, 1979; Grünwald and Dawid, 2004; Asif et al., 2015) that seeks

a predictor that minimizes a loss metric in the worst-case given the statistical summaries of the

empirical distribution. We replace the empirical training data for evaluating our predictor with

an adversary that is free to choose an evaluating distribution from the set of distributions that

match the statistical summaries of empirical training data via moment matching constraints,

as defined by a graphical structure.

Our AGM framework accepts a variety of loss metrics. A notable example that connects

our framework to previous models is the logarithmic loss metric. The conditional random field

(CRF) model (Lafferty et al., 2001) can be viewed as the robust predictor that best minimizes

the logarithmic loss metric in the worst-case subject to moment matching constraints. We

focus on a family of loss matrices that additively decomposes over each variable and is defined

only based on the label values of the predictor and evaluator. For examples, the additive zero-

one (the Hamming loss), ordinal regression (absolute), and cost sensitive metrics fall into this

family of loss metrics. We propose efficient exact algorithms for learning and prediction for
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graphical structures with low treewidth. Finally, we experimentally demonstrate the benefits

of our framework compared with the previous models on structured prediction tasks.

3.2 Background and related works

3.2.1 Structured prediction, Fisher consistency, and graphical models

The structured prediction task is to simultaneously predict correlated label variables y ∈

Y—often given input variables x ∈ X—to minimize a loss metric (e.g., loss : Y × Y → R)

with respect to the true label values ỹ. This is in contrast with classification methods that

predict one single variable y. Given a distribution over the multivariate labels, P (y), Fisher

consistency is a desirable characteristic that requires a learning method to produce predictions

ŷ that minimize the expected loss of this distribution, ŷ∗ ∈ argminŷ EY∼P̃ [loss(ŷ,Y)], under

ideal learning conditions (i.e., trained from the true data distribution using a fully expressive

feature representation).

To reduce the complexity of the mappings from X to Y being learned, independence assump-

tions and more restrictive representations are employed. In probabilistic graphical models, such

as Bayesian networks (Pearl, 1985) and random fields (Lafferty et al., 2001), these assumptions

are represented using a graph over the variables. For graphs with arbitrary structure, inference

(i.e., computing posterior probabilities or maximal value assignments) requires exponential time

in terms of the number of variables (Cooper, 1990). However, this run-time complexity reduces

to be polynomial in terms of the number of predicted variables for graphs with low treewidth

(e.g., chains, trees, cycles).
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3.2.2 Conditional random fields as robust multivariate log loss minimization

Following ideas from robust Bayes decision theory (Topsøe, 1979; Grünwald and Dawid,

2004) and distributional robustness (Delage and Ye, 2010), the conditional random field (Laf-

ferty et al., 2001) can be derived as a robust minimizer of the logarithmic loss subject to

moment-matching constraints:

min
P̂ (·|x)

max
P̌ (·|x)

E X∼P̃;
Y̌|X∼P̌

[
−log P̂ (Y̌|X)

]
such that: E X∼P̃;

Y̌|X∼P̌

[
Φ(X, Y̌)

]
= EX,Y∼P̃ [Φ(X,Y)] , (3.1)

where Φ : X × Y → Rk are feature functions that typically decompose additively over subsets

of variables. Under this perspective, the predictor P̂ seeks the conditional distribution that

minimizes log loss against an adversary P̌ seeking to choose an evaluation distribution that

approximates training data statistics, while otherwise maximizing log loss. As a result, the

predictor is robust not only to the training sample P̃ , but all distributions with matching

moment statistics (Grünwald and Dawid, 2004).

The saddle point for Equation (3.1) is obtained by the parametric conditional distribu-

tion P̂θ(y|x) = P̌θ(y|x) = eθ·Φ(x,y)
/∑

y′∈Y e
θ·Φ(x,y′) with parameters θ chosen by maximizing

the data likelihood: argmaxθ EX,Y∼P̃

[
log P̂θ(Y|X)

]
. The decomposition of the feature func-

tion into additive clique features, Φi(x,y) =
∑

c∈Ci φc,i(xc,yc), can be represented graphically

by connecting the variables within cliques with undirected edges. Dynamic programming al-

gorithms (e.g., junction tree) allow the exact likelihood to be computed in run time that is

exponential in terms of the treewidth of the resulting graph (Cowell et al., 2006).
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Predictions for a particular loss metric are then made using the Bayes optimal prediction

for the estimated distribution: y∗ = argminy EŶ|x∼P̂θ [loss(y, Ŷ)]. This two-stage prediction

approach can create inefficiencies when learning from limited amounts of data since optimization

may focus on accurately estimating probabilities in portions of the input space that have no

impact on the decision boundaries of the Bayes optimal prediction. Rather than separating the

prediction task from the learning process, we incorporate the evaluation loss metric of interest

into the robust minimization formulation of Equation (3.1) in this work.

3.2.3 Structured support vector machines

Structured support vector machines (SSVMs) (Joachims, 2005) and related maximum mar-

gin methods (Taskar et al., 2005a) directly incorporate the evaluation loss metric into the

training process. This is accomplished by minimizing a hinge loss convex surrogate:

hingeθ(ỹ) = max
y

loss(y, ỹ) + θ · (Φ(x, ỹ)− Φ(x,y)) , (3.2)

where θ represents the model parameters, ỹ is the ground truth label, and Φ(x,y) is a feature

function that decomposes additively over subsets of variables.

Using a clique-based graphical representation of the potential function, and assuming the

loss metric also additively decomposes into the same clique-based representation, SSVMs have

a computational complexity similar to probabilistic graphical models. Specifically, finding the

value assignment y that maximizes this loss-augmented potential can be accomplished using
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dynamic programming in run time that is exponential in the graph treewidth (Cowell et al.,

2006).

A key weakness of support vector machines in general is their lack of Fisher consistency;

there are distributions for multiclass prediction tasks for which the SVM will not learn a Bayes

optimal predictor, even when the models are given access to the true distribution and sufficiently

expressive features, due to the disconnection between the Crammer-Singer hinge loss surrogate

(Crammer and Singer, 2002) and the evaluation loss metric (i.e., the 0-1 loss in this case) (Liu,

2007). In practice, if the empirical data behaves similarly to those distributions (e.g., P (y|x)

have no majority y for a specific input x), the inconsistent model may perform poorly. This

inconsistency extends to the structured prediction setting except in limited special cases (Zhang,

2004). We overcome these theoretical deficiencies in our approach by using an adversarial

formulation that more closely aligns the training objective with the evaluation loss metric,

while maintaining convexity.

3.2.4 Other related works

Distributionally robust learning. There has been a recent surge of interest in the

machine learning community for developing distributionally robust learning algorithms. The

proposed learning algorithms differ in the uncertainty sets used to provide robustness. Previous

robust learning algorithms have been proposed under the F-divergence measures (which includes

the popular KL-divergence and χ-divergence) (Namkoong and Duchi, 2016; Namkoong and

Duchi, 2017; Hashimoto et al., 2018), the Wasserstein metric uncertainty set (Shafieezadeh-

Abadeh et al., 2015; Esfahani and Kuhn, 2018; Chen and Paschalidis, 2018), and the moment
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matching uncertainty set (Delage and Ye, 2010; Livni et al., 2012). Our robust adversarial

learning approach differs from the previous approaches by focusing on the robustness in terms

of the conditional distribution P (y|x) instead of the joint distribution P (x,y). Our approach

seeks a predictor that is robust to the worst-case conditional label probability under the moment

matching constraints. We do not impose any robustness to the training examples x.

Consistent methods. A notable research interest in consistent methods for structured

prediction tasks has also been observed. This line of works includes a consistent regularization

approach that maps the original structured prediction problem into a kernel Hilbert space

and employs a multivariate regression on the Hilbert space (Ciliberto et al., 2016), and a

consistent quadratic surrogate for any structured prediction loss metric with a polynomial

sample complexity analysis for the additive zero-one loss metric surrogate (Osokin et al., 2017).

Our work differs from these lines of works in the focus on the structure. We focus on the

graphical structures that model interaction between labels, whereas the previous works focus

on the structure of the loss metric itself.

3.3 Adversarial Graphical Models

We propose adversarial graphical models (AGMs) to better align structured prediction with

evaluation loss metrics in settings where the structured interaction between labels are repre-

sented in a graph.

3.3.1 Formulations

We construct a predictor that best minimizes a loss metric for the worst-case evaluation

distribution that (approximately) matches the statistical summaries of empirical training data.
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Our predictor is allowed to make a probabilistic prediction over all possible label assignments

(denoted as P̂ (ŷ|x)). However, instead of evaluating the prediction with empirical data (as com-

monly performed by empirical risk minimization formulations (Vapnik, 1998)), the predictor

is pitted against an adversary that also makes a probabilistic prediction (denoted as P̌ (y̌|x)).

The adversary is constrained to select its conditional distributions to match the statistical sum-

maries of the empirical training distribution (denoted as P̃ ) via moment matching constraints

on the feature functions Φ.

Definition 3.1. The adversarial prediction method for structured prediction problems with

graphical interaction between labels is:

min
P̂ (ŷ|x)

max
P̌ (y̌|x)

E X∼P̃ ;

Ŷ|X∼P̂ ;

Y̌|X∼P̌

[
loss(Ŷ, Y̌)

]
such that: E X∼P̃ ;

Y̌|X∼P̌

[
Φ(X, Y̌)

]
= Φ̃, (3.3)

where the vector of feature moments, Φ̃ = EX,Y∼P̃ [Φ(X,Y)], is measured from sample training

data. The feature function Φ(X,Y) contains features that are additively decomposed over cliques

in the graph, e.g. Φ(x,y) =
∑

c φ(x,yc).

We focus on pairwise graphical structures where the interactions between labels are defined

over the edges (and nodes) of the graph. We also restrict the loss metric to a family of metrics

that additively decompose over each yi variable, i.e., loss(ŷ, y̌) =
∑n

i=1 loss(ŷi, y̌i). Directly

solving the optimization in Equation (3.3) is impractical for reasonably-sized problems since

P (y|x) grows exponentially with the number of predicted variables. Instead, we utilize the
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method of Lagrange multipliers and the marginal formulation of the distributions of predictor

and adversary to formulate a simpler dual optimization problem as stated in Theorem 3.1.

Theorem 3.1. For the adversarial structured prediction with pairwise graphical structure and

an additive loss metric, solving the optimization in Definition 1 is equivalent to solving the

following expectation of maximin problems over the node and edge marginal distributions pa-

rameterized by Lagrange multipliers θ:

min
θe,θv

EX,Y∼P̃ max
P̌ (y̌|x)

min
P̂ (ŷ|x)

[∑n
i

∑
ŷi,y̌i

P̂ (ŷi|x)P̌ (y̌i|x)loss(ŷi, y̌i) (3.4)

+
∑

(i,j)∈E
∑

y̌i,y̌j
P̌ (y̌i, y̌j |x) [θe · φ(x, y̌i, y̌j)]−

∑
(i,j)∈E θe · φ(x, yi, yj)

+
∑n

i

∑
y̌i
P̌ (y̌i|x) [θv · φ(x, y̌i)]−

∑n
i θv · φ(x, yi)

]
,

where φ(x, yi) is the node feature function for node i, φ(x, yi, yj) is the edge feature function

for the edge connecting node i and j, E is the set of edges in the graphical structure, and θv

and θe are the Lagrange dual variables for the moment matching constraints corresponding to

the node and edge features, respectively. The optimization objective depends on the predictor’s

probability prediction P̂ (ŷ|x) only through its node marginal probabilities P̂ (ŷi|x). Similarly,

the objective depends on the adversary’s probabilistic prediction P̌ (y̌|x) only through its node

and edge marginal probabilities, i.e., P̌ (y̌i|x), and P̌ (y̌i, y̌j |x).
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Proof.

min
P̂ (ŷ|x)

max
P̌ (y̌|x)

EX∼P̃ ;Ŷ|X∼P̂ ;Y̌|X∼P̌

[
loss(Ŷ, Y̌)

]
(3.5)

subject to: EX∼P̃ ;Y̌|X∼P̌
[
Φ(X, Y̌)

]
= EX,Y∼P̃ [Φ(X,Y)]

(a)
= max

P̌ (y̌|x)
min
P̂ (ŷ|x)

EX∼P̃ ;Ŷ|X∼P̂ ;Y̌|X∼P̌

[
loss(Ŷ, Y̌)

]
(3.6)

subject to: EX∼P̃ ;Y̌|X∼P̌
[
Φ(X, Y̌)

]
= EX,Y∼P̃ [Φ(X,Y)]

(b)
= max

P̌ (y̌|x)
min
θ

min
P̂ (ŷ|x)

EX,Y∼P̃ ;Ŷ|X∼P̂ ;Y̌|X∼P̌

[
loss(Ŷ, Y̌) + θT

(
Φ(X, Y̌)− Φ(X,Y)

)]
(3.7)

(c)
= min

θ
max
P̌ (y̌|x)

min
P̂ (ŷ|x)

EX,Y∼P̃ ;Ŷ|X∼P̂ ;Y̌|X∼P̌

[
loss(Ŷ, Y̌) + θT

(
Φ(X, Y̌)− Φ(X,Y)

)]
(3.8)

(d)
= min

θ
EX,Y∼P̃ max

P̌ (y̌|x)
min
P̂ (ŷ|x)

EŶ|X∼P̂ ;Y̌|X∼P̌

[
loss(Ŷ, Y̌) + θT

(
Φ(X, Y̌)− Φ(X,Y)

)]
(3.9)

(e)
= min

θe,θv
EX,Y∼P̃ max

P̌ (y̌|x)
min
P̂ (ŷ|x)

EŶ|X∼P̂ ;Y̌|X∼P̌

[∑n
i loss(Ŷi, Y̌i) (3.10)

+ θe ·
∑

(i,j)∈E
[
φ(X, Y̌i, Y̌j)− φ(X, Yi, Yj)

]
+ θv ·

∑n
i

[
φ(X, Y̌i)− φ(X, Yi)

] ]
(f)
= min

θe,θv
EX,Y∼P̃ max

P̌ (y̌|x)
min
P̂ (ŷ|x)

∑
ŷ,y̌

P̂ (ŷ|x)P̌ (y̌|x)
[∑n

i loss(ŷi, y̌i) (3.11)

+ θe ·
∑

(i,j)∈E [φ(x, y̌i, y̌j)− φ(x, yi, yj)] + θv ·
∑n

i [φ(x, y̌i)− φ(x, yi)]
]

(g)
= min

θe,θv
EX,Y∼P̃ max

P̌ (y̌|x)
min
P̂ (ŷ|x)

[∑n
i

∑
ŷi,y̌i

P̂ (ŷi|x)P̌ (y̌i|x)loss(ŷi, y̌i) (3.12)

+
∑

(i,j)∈E
∑

y̌i,y̌j
P̌ (y̌i, y̌j |x) [θe · φ(x, y̌i, y̌j)]−

∑
(i,j)∈E θe · φ(x, yi, yj)

+
∑n

i

∑
y̌i
P̌ (y̌i|x) [θv · φ(x, y̌i)]−

∑n
i θv · φ(x, yi)

]
.

The transformation steps above are described as follows:
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(a-d) We follow the similar transformation steps in the proof of Theorem 2.1.

(e) We apply our description of loss metrics which is additively decomposable into the loss for

each node, and the features that can be decomposed into node and edge features. We also

separate the notation for the Lagrange dual variable into the variable for the constraints

on node features (θv) and and the variable for the edge features (θe).

(f) We rewrite the expectation over P̂ (ŷ|x) and P̌ (y̌|x) in terms of the probability-weighted

average.

(g) Based on the property of the loss metrics and feature functions, the sum over the ex-

ponentially many possibilities of ŷ and y̌ can be simplified into the sum over individual

nodes and edges values, resulting in the optimization over the node and edge marginal

distributions.

Note that the optimization in Equation (3.4) over the node and edge marginal distributions

resembles the optimization of CRFs (Sutton et al., 2012). In terms of computational complexity,

this means that for a general graphical structure, the optimization above may be intractable.

We focus on families of graphical structures in which the optimization is known to be tractable.

In the next subsection, we begin with the case of tree-structured graphical models and then

proceed with the case of graphical models with low treewidth. In both cases, we formulate the

corresponding efficient learning algorithms.
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3.3.2 Optimization

We first introduce our vector and matrix notations for AGM optimization. Without loss of

generality, we assume the number of class labels k to be the same for all predicted variables

yi,∀i ∈ {1, . . . , n}. Let pi be a vector with length k, where its a-th element contains P̂ (ŷi = a|x),

and let Qi,j be a k-by-k matrix with its (a, b)-th cells store P̌ (y̌i = a, y̌j = b|x). We also use

a vector and matrix notation to represent the ground truth label by letting zi be a one-hot

vector where its a-th element z
(a)
i = 1 if yi = a or otherwise 0, and letting Zi,j be a one-hot

matrix where its (a, b)-th cell Z
(a,b)
i,j = 1 if yi = a ∧ yj = b or otherwise 0. For each node

feature φl(x, yi), we denote wi,l as a length k vector where its a-th element contains the value

of φl(x, yi = a). Similarly, for each edge feature φl(x, yi, yj), we denote Wi,j,l as a k-by-k matrix

where its (a, b)-th cell contains the value of φl(x, yi = a, yj = b). For a pairwise graphical model

with tree structure, we rewrite Equation (3.4) using our vector and matrix notation with local

marginal consistency constraints as follows:

min
θe,θv

EX,Y∼P̃ max
Q∈∆

min
p∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i − Zpt(i);i,

∑
l θ

(l)
e Wpt(i);i;l

〉
(3.13)

+ (QT
pt(i);i1− zi)

T(
∑

l θ
(l)
v wi;l)

]
subject to: QT

pt(pt(i));pt(i)1 = Qpt(i);i1, ∀i ∈ {1, . . . , n},

where pt(i) indicates the parent of node i in the tree structure, Li stores a loss matrix corre-

sponding to the portion of the loss metric for node i, i.e., L
(a,b)
i = loss(ŷi = a, y̌i = b), and

〈·, ·〉 denotes the Frobenius inner product between two matrices, i.e., 〈A,B〉 =
∑

i,j Ai,jBi,j .
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(a)
(b)

Figure 11. An example tree structure with five nodes and four edges with the corresponding
marginal probabilities for predictor and adversary (a); and the matrix and vector notations of
the probabilities (b). Note that we introduce a dummy edge variable on top of the root node
to match the marginal constraints.

Note that we also employ probability simplex constraints (∆) to each Qpt(i);i and pi. Figure 11

shows an example tree structure with its marginal probabilities and the matrix notation of the

probabilities.

3.3.2.1 Learning algorithm

We first focus on solving the inner minimax optimization of Equation (3.13). To simplify

our notation, we denote the edge potentials Bpt(i);i =
∑

l θ
(l)
e Wpt(i);i;l and the node potentials

bi =
∑

l θ
(l)
v wi;l. We then rewrite the inner optimization of Equation (3.13) as:

max
Q∈∆

min
p∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i,Bpt(i);i

〉
+ (QT

pt(i);i1)Tbi

]
(3.14)

subject to: QT
pt(pt(i));pt(i)1 = Qpt(i);i1, ∀i ∈ {1, . . . , n}.
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To solve the optimization above, we use dual decomposition technique (Boyd et al., 2008; Sontag

et al., 2011) that decompose the dual version of the optimization problem into several sub-

problem that can be solved independently. By introducing the Lagrange variable u for the local

marginal consistency constraint, we formulate an equivalent dual unconstrained optimization

problem as shown in Theorem 3.2.

Theorem 3.2. The constrained optimization in Equation (3.14) is equivalent to an uncon-

strained Lagrange dual problem with an inner optimization that can be solved independently for

each node as follows:

min
u

n∑
i

[
max
Qi∈∆

〈
Qpt(i);i,Bpt(i);i+1bT

i −ui1
T+
∑

k∈ch(i) 1uT
k

〉
+ min

pi∈∆
piLi(Q

T
pt(i);i1)

]
, (3.15)

where ui is the Lagrange dual variable associated with the marginal constraint of QT
pt(pt(i));pt(i)1 =

Qpt(i);i1, and ch(i) represent the children of node i.



104

Proof.

max
Q∈∆

min
p∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i,Bpt(i);i

〉
+ (QT

pt(i);i1)Tbi

]
(3.16)

subject to: QT
pt(pt(i));pt(i)1 = Qpt(i);i1, ∀i ∈ {1, . . . , n}

(a)
= max

Q∈∆
min

u
min
p∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i,Bpt(i);i

〉
+ (QT

pt(i);i1)Tbi

]
(3.17)

+

n∑
i

uT
i

(
QT
pt(pt(i));pt(i)1−Qpt(i);i1

)
(b)
= min

u
max
Q∈∆

min
p∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i,Bpt(i);i

〉
+ (QT

pt(i);i1)Tbi

]
(3.18)

+
n∑
i

uT
i

(
QT
pt(pt(i));pt(i)1−Qpt(i);i1

)
(c)
= min

u
max
Q∈∆

min
p∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i,Bpt(i);i

〉
+
〈
Qpt(i);i,1bT

i

〉 ]
(3.19)

+

n∑
i

[ 〈
Qpt(pt(i));pt(i),1uT

i

〉
−
〈
Qpt(i);i,ui1

T
〉 ]

(d)
= min

u
max
Q∈∆

min
p∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i,Bpt(i);i+1bT

i −ui1
T+
∑

k∈ch(i) 1uT
k

〉]
. (3.20)

The transformation steps above are described as follows:

(a) We introduce the Lagrange dual variable u, where ui is the dual variable associated with

the marginal constraint of QT
pt(pt(i));pt(i)1 = Qpt(i);i1.

(b) Similar to the analysis in Theorem 1, strong duality holds due to Sion’s minimax theorem.

Therefore, we can flip the optimization order of Q and u.

(c) We rewrite the vector multiplication over Qpt(i);i1 or QT
pt(i);i1 with the corresponding

Frobenius inner product notations.
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(d) We regroup the terms in the optimization above by considering the parent-child relations

in the tree for each node. Note that ch(i) represents the children of node i.

We denote matrix Apt(i);i , Bpt(i);i+1bT
i −ui1

T+
∑

k∈ch(i) 1uT
k to simplify the inner opti-

mization in Equation (3.15). Let us define ri , QT
pt(i);i1 and ai be the column wise maximum

of matrix Apt(i);i, i.e., a
(l)
i = maxl Al;i. Given the value of u, each of the inner optimizations

in Equation (3.15) can be equivalently solved in terms of our newly defined variable changes ri

and ai as follows:

max
ri∈∆

[
aT
i ri + min

pi∈∆
piLiri

]
. (3.21)

Note that this resembles the optimization in a standard adversarial multiclass classification

problem we discussed in Section 2.4, i.e., Equation (2.13) with Li as the loss matrix and ai

as the class-based potential vector, without the potential for the true label. As discussed

in Section 2.4, Equation (3.21) can be solved analytically for several forms of loss metrics

(e.g., zero-one, absolute, squared, abstention loss metrics), or as a linear program for a more

general loss metrics. Given the solution of this inner optimization, we use a sub-gradient based

optimization to find the optimal Lagrange dual variables u∗.

To recover our original variables for the adversary’s marginal distribution Q∗pt(i);i given the

optimal dual variables u∗, we use the following steps. First, we use u∗ and Equation (3.21) to

compute the value of the node marginal probability r∗i . With the additional information that



106

we know the value of r∗i (i.e., the adversary’s node probability), Equation (3.14) can be solved

independently for each Qpt(i);i to obtain the optimal Q∗pt(i);i as follows:

Q∗pt(i);i = argmax
Qpt(i);i∈∆

〈
Qpt(i);i,Bpt(i);i

〉
subject to: QT

pt(i);i1 = r∗i , Qpt(i);i1 = r∗pt(i). (3.22)

Note that the optimization above resembles an optimal transport problem over two discrete

distributions (Villani, 2008) with cost matrix −Bpt(i);i. This optimal transport problem can

be solved using a linear program solver or a more sophisticated solver (e.g., using Sinkhorn

distances (Cuturi, 2013)).

For our overall learning algorithm, we use the optimal adversary’s marginal distributions

Q∗pt(i);i to compute the sub-differential of the AGM formulation (Equation (3.13)) with re-

spect to θv and θe. The sub-differential for θ
(l)
v includes the expected node feature difference

EX,Y∼P̃
∑n

i (Q∗Tpt(i);i1− zi)
Twi;l, whereas the sub-differential for θ

(l)
e includes the expected edge

feature difference EX,Y∼P̃
∑n

i

〈
Q∗pt(i);i − Zpt(i);i,Wpt(i);i;l

〉
. Using this sub-differential infor-

mation, we employ a stochastic sub-gradient based algorithm to obtain the optimal θ∗v and

θ∗e .

3.3.2.2 Prediction algorithms

We propose two different prediction schemes: probabilistic and non-probabilistic prediction.

Probabilistic prediction. Our probabilistic prediction is based on the predictor’s label

probability distribution in the adversarial prediction formulation. Given fixed values of θv and
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θe, we solve a minimax optimization similar to Equation (3.13) by flipping the order of the

predictor and adversary distribution as follows:

min
p∈∆

max
Q∈∆

n∑
i

[
piLi(Q

T
pt(i);i1) +

〈
Qpt(i);i,

∑
l θ

(l)
e Wpt(i);i;l

〉
+ (QT

pt(i);i1)T(
∑

l θ
(l)
v wi;l)

]
(3.23)

subject to: QT
pt(pt(i));pt(i)1 = Qpt(i);i1, ∀i ∈ {1, . . . , n}.

To solve the inner maximization of Q we use a similar technique as in MAP inference for CRFs.

We then use a projected gradient optimization technique to solve the outer minimization over

p and a technique for projecting to the probability simplex (Duchi et al., 2008).

Non-probabilistic prediction. Our non-probabilistic prediction scheme is similar to

SSVM’s prediction algorithm. In this scheme, we find ŷ that maximizes the potential value,

i.e., ŷ = argmaxy f(x,y), where f(x,y) = θTΦ(x,y). This prediction scheme is faster than

the probabilistic scheme since we only need a single run of a Viterbi-like algorithm for tree

structures.

3.3.2.3 Runtime analysis

Each stochastic update in our algorithm involves finding the optimal u and recovering

the optimal Q to be used in a sub-gradient update. Each iteration of a sub-gradient based

optimization to solve u costs O(n · c(L)) time where n is the number of nodes and c(L) is the

cost for solving the optimization in Equation (3.21) for the loss matrix L. Recovering all of the

adversary’s marginal distributions Qpt(i);i using a fast Sinkhorn distance solver has the empirical

complexity of O(nk2) where k is the number of classes (Cuturi, 2013). The total running time
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of our method depends on the loss metric we use. For example, if the loss metric is the additive

zero-one loss, the total complexity of one stochastic gradient update is O(nlk log k+nk2) time,

where l is the number of iterations needed to obtain the optimal u and O(k log k) time is the

cost for solving Equation (3.21) for the zero-one loss (Fathony et al., 2016). In practice, we

find the average value of l to be relatively small. This runtime complexity is competitive with

the CRF, which requires O(nk2) time to perform message-passing over a tree to compute the

marginal distribution of each parameter update, and also with structured SVM where each

iteration requires computing the most violated constraint, which also costs O(nk2) time for

running a Viterbi-like algorithm over a tree structure.

3.3.2.4 Learning algorithm for graphical structure with low treewidth

Our algorithm for tree-based graphs can be easily extended to the case of graphical structures

with low treewidth. Similar to the case of the junction tree algorithm for probabilistic graphical

models, we first construct a junction tree representation for the graphical structure. We then

solve a similar optimization as in Equation (3.13) on the junction tree. In this case, the time

complexity of one stochastic gradient update of the algorithm is O(nlwk(w+1) log k+nk2(w+1))

time for the optimization with an additive zero-one loss metric, where n is the number of

cliques in the junction tree, k is the number of classes, l is the number of iterations in the inner

optimization, and w is the treewidth of the graph. This time complexity is competitive with

the time complexities of CRF and SSVM which are also exponential in the treewidth of the

graph.
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3.3.3 Fisher consistency analysis

A key theoretical advantage of our approach over the structured SVM is that it provides

Fisher consistency. This guarantees that under the true distribution P (x,y), the learning al-

gorithm yields a Bayes optimal prediction with respect to the loss metric (Tewari and Bartlett,

2007; Liu, 2007). In this setting, the learning algorithm is allowed to optimize over all measur-

able functions, or similarly, it has a feature representation of unlimited richness. We establish

the Fisher consistency of our AGM approach in Theorem 3.3.

Theorem 3.3. The AGM approach is Fisher consistent for all additive loss metrics.

Proof. As established in Theorem 3.1, pairwise marginal probabilities are sufficient statistics

of the adversary’s distribution. An unlimited access to arbitrary rich feature representa-

tion constrains the adversary’s distribution in Equation (3.3) to match the marginal prob-

abilities of the true distribution, making the optimization in Equation (3.3) equivalent to

minŷ EX,Y∼P [loss(ŷ,Y)], which is the Bayes optimal prediction for the loss metric.

3.4 Experimental Evaluations

To evaluate our approach, we apply AGM to two different tasks: predicting emotion intensity

from a sequence of images, and labeling entities in parse trees with semantic roles. We show

the benefit of our method compared with a conditional random field (CRF) and a structured

SVM (SSVM).
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3.4.1 Facial emotion intensity prediction

We evaluate our approach in the facial emotion intensity prediction task (Kim and Pavlovic,

2010). Given a sequence of facial images, the task is to predict the emotion intensity for each

individual image. The emotion intensity labels are categorized into three ordinal categories:

neutral < increasing < apex, reflecting the degree of intensity. The dataset contains 167

sequences collected from 100 subjects consisting of six types of basic emotions (anger, disgust,

fear, happiness, sadness, and surprise). In terms of the features used for prediction, we follow

an existing feature extraction procedure (Kim and Pavlovic, 2010) that uses Haar-like features

and the PCA algorithm to reduce the feature dimensionality.

In our experimental setup, we combine the data from all six different emotions and focus

on predicting the ordinal category of emotion intensity. From the whole 167 sequences, we

construct 20 different random splits of the training and the testing datasets with 120 sequences

of training samples and 47 sequences of testing samples. We use the training set in the first

split to perform cross validation to obtain the best regularization parameters and then use the

best parameter in the evaluation phase for all 20 different splits of the dataset.

In the evaluation, we use six different loss metrics. The first three metrics are the average

of zero-one, absolute and squared loss metrics for each node in the graph (where we assign

label values: neutral = 1, increasing = 2, and apex = 3). The other three metrics are the

weighted version of the zero-one, absolute and squared loss metrics. These weighted variants

of the loss metrics reflect the focus on the prediction task by emphasizing the prediction on
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particular nodes in the graph. In this experiment, we set the weight to be the position in the

sequence so that we focus more on the latest nodes in the sequences.

We compare our method with CRF and SSVM models. Both the AGM and the SSVM can

incorporate the task’s customized loss metrics in the learning process. The prediction for AGM

and SSVM is done by taking an arg-max of potential values, i.e., argmaxy f(x,y) = θ ·Φ(x,y).

For CRF, the training step aims to model the conditional probability P̂θ(y|x). The CRF’s

predictions are computed using the Bayes optimal prediction with respect to the loss metric

and CRF’s conditional probability, i.e., argminy EŶ|x∼P̂θ [loss(y, Ŷ)].

We report the loss metrics averaged over the dataset splits as shown in Table VII. We

highlight the result that is either the best result or not significantly worse than the best result

(using Wilcoxon signed-rank test with α = 0.05). The result shows that our method significantly

outperforms CRF in three cases (absolute, weighted zero-one, and weighted absolute losses), and

statistically ties with CRF in one case (squared loss), while only being outperformed by CRF in

one case (zero-one loss). AGM also outperforms SSVM in three cases (absolute, squared, and

weighted zero-one losses), and statistically ties with SSVM in one case (weighted absolute loss),

while only being outperformed by SSVM in one case (weighted squared loss). In the overall

result, AGM maintains advantages compared to CRFs and SSVMs in both the overall average

loss and the number of “indistinguishably best” performances on all cases. These results may

reflect the theoretical benefit that AGM has over CRF and SSVM mentioned in Section 3 when

learning from noisy labels.
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TABLE VII. The average loss metrics for the emotion intensity prediction. Bold numbers
indicate the best or not significantly worse than the best results (Wilcoxon signed-rank test
with α = 0.05).

Loss metrics AGM CRF SSVM

zero-one, unweighted 0.34 0.32 0.37
absolute, unweighted 0.33 0.34 0.40
squared, unweighted 0.38 0.38 0.40
zero-one, weighted 0.28 0.32 0.29
absolute, weighted 0.29 0.36 0.29
squared, weighted 0.36 0.40 0.33

average 0.33 0.35 0.35
# bold 4 2 2

3.4.2 Semantic role labeling

We evaluate the performance of our algorithm on the semantic role labeling task for the

CoNLL 2005 dataset (Carreras and Màrquez, 2005). Given a sentence and its syntactic parse

tree as the input, the task is to recognize the semantic role of each constituent in the sentence

as propositions expressed by some target verbs in the sentence. There are a total of 36 semantic

roles grouped by their types of: numbered arguments, adjuncts, references of numbered and

adjunct arguments, continuation of each class type and the verb. We prune the syntactic trees

according to (Xue and Palmer, 2004), i.e., we only include siblings of the nodes which are on the

path from the verb (V) to the root and also the immediate children in case that the node is a

propositional phrase (PP). Following the setup used by (Cohn and Blunsom, 2005), we extract

the same syntactic and contextual features and label non-argument constituents and children
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nodes of arguments as ”outside” (O). Additionally, in our experiment we simplify the prediction

task by reducing the number of labels. Specifically, we choose the three most common labels

in the WSJ test dataset, i.e., A0,A1,A2 and their references R-A0,R-A1,R-A2, and we combine

the rest of the classes as one separate class R. Thus, together with outside O and verb V, we

have a total of nine classes in our experiment.

But isIt uncertain thesewhether institutions takewill those steps

CC
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JJ

DT
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NNS
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MD
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S

SBARADJP
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O

O

O
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OO

O

OO
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RAM-MOD

Figure 12. Example of a syntax tree with semantic role labels as bold superscripts. The dotted
and dashed lines show the pruned edges from the tree. The original label AM-MOD is among class
R in our experimental setup.

In the evaluation, we use a cost-sensitive loss matrix that reflects the importance of each

label. We use the same cost-sensitive loss matrix to evaluate the prediction of all nodes in the
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graph. The cost-sensitive loss matrix is constructed by picking a random order of the class

label and assigning an ordinal loss based on the order of the labels. We compare the average

cost-sensitive loss metric of our method with the CRF and the SSVM as shown in Table VIII.

As we can see from the table, our result is competitive with SSVM, while maintaining an

advantage over the CRF. This experiment shows that incorporating customized losses into the

training process of learning algorithms is important for some structured prediction tasks. Both

the AGM and the SSVM are designed to align their learning algorithms with the customized

loss metric, whereas CRF can only utilize the loss metric information in its prediction step.

TABLE VIII. The average loss metrics for the semantic role labeling task.

Loss metrics AGM CRF SSVM

cost-sensitive loss 0.14 0.19 0.14

3.5 Conclusions and Future Works

We introduced adversarial graphical models, a robust approach to structured prediction that

possesses the main benefits of existing methods: (1) it guarantees the same Fisher consistency

possessed by conditional random fields (Lafferty et al., 2001); (2) it aligns the target loss

metric with the learning objective, as in maximum margin methods (Joachims, 2005; Taskar

et al., 2005a); and (3) its computational run time complexity is primarily shaped by the graph
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treewidth, which is similar to both graphical modeling approaches. Our experimental results

demonstrate the benefits of this approach on structured prediction tasks with low treewidth.

For more complex graphical structures with high treewidth, our proposed algorithm may

not be efficient. Similar to the case of CRFs and SSVMs, approximation algorithms may be

needed to solve the optimization in AGM formulations for these structures. In future work, we

plan to investigate the optimization techniques and applicable approximation algorithms for

general graphical structures.



CHAPTER 4

ADVERSARIAL BIPARTITE MATCHING IN GRAPHS

(This chapter was previously published as “Efficient and Consistent Adversarial Bipartite

Matching” (Fathony et al., 2018a) in the Proceedings of the 35th International Conference on

Machine Learning (ICML 2018).)

4.1 Introduction

How can the elements from two sets be paired one-to-one to have the largest sum of pairwise

utilities? This maximum weighted perfect bipartite matching problem is a classical combina-

torial optimization problem in computer science. It can be formulated and efficiently solved

in polynomial time as a linear program or using more specialized Hungarian algorithm tech-

niques (Kuhn, 1955). This has made it an attractive formalism for posing a wide range of

problems, including recognizing correspondences in similar images (Belongie et al., 2002; Liu

et al., 2008; Zhu et al., 2008; Rui et al., 2007), finding word alignments in text (Chan and Ng,

2008), and providing ranked lists of items for information retrieval tasks (Amini et al., 2008).

Machine learning methods seek to estimate the pairwise utilities of bipartite graphs so

that the maximum weighted complete matching is most compatible with the (distribution of)

ground truth matchings of training data. When these utilities are learned abstractly, they can

be employed to make predictive matchings for test samples. Unfortunately, important measures

of incompatibility (e.g., the Hamming loss) are often non-continuous with many local optima in

116
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the predictors’ parameter spaces, making direct minimization intractable. Given this difficulty,

two natural desiderata for any predictor are:

• Efficiency: learning from training data and making predictions must be computed effi-

ciently in (low-degree) polynomial time; and

• Consistency: the predictor’s training objectives must also minimize the underlying Ham-

ming loss, at least under ideal learning conditions (given the true distribution and fully

expressive model parameters).

Existing methods for learning bipartite matchings fail in one or the other of these desiderata;

exponentiated potential fields models (Lafferty et al., 2001; Petterson et al., 2009) are intractable

for large sets of items, while maximum margin methods based on the hinge loss surrogate

(Taskar et al., 2005a; Tsochantaridis et al., 2005) lack Fisher consistency (Tewari and Bartlett,

2007; Liu, 2007). We discuss these limitations formally in Section 4.2.

Given the deficiencies of the existing methods, we contribute the first approach for learning

bipartite matchings that is both computationally efficient and Fisher consistent. Our approach

is based on an adversarial formulation for learning (Topsøe, 1979; Grünwald and Dawid, 2004;

Asif et al., 2015) that poses prediction-making as a data-constrained zero-sum game between

a player seeking to minimize the expected loss and an adversarial data approximator seeking

to maximize the expected loss. We present an efficient approach for solving the corresponding

zero-sum game arising from our formulation by decomposing the game’s solution into marginal

probabilities and optimizes these marginal probabilities directly to obtain an equilibrium saddle
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point for the game. We then establish the computational efficiency and consistency of this

approach and demonstrate its benefits experimentally.

4.2 Previous Inefficiency and Inconsistency

4.2.1 Bipartite Matching Task

Figure 13. Bipartite matching task with n=4.

Given two sets of elements A and B of equal size (|A| = |B|), a maximum weighted bipar-

tite matching π is the one-to-one mapping (e.g., Figure 13) from each element in A to each

element in B that maximizes the sum of potentials: maxπ∈Π ψ(π) = maxπ∈Π
∑

i ψi(πi). Here

πi ∈ [n] := {1, 2, . . . , n} is the entry in B that is matched with the i-th entry of A. The set

of possible solutions Π is simply all permutation of [n]. Many machine learning tasks pose
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prediction as the solution to this problem, including: word alignment for natural language pro-

cessing tasks (Taskar et al., 2005b; Padó and Lapata, 2006; MacCartney et al., 2008); learning

correspondences between images in computer vision applications (Belongie et al., 2002; Dellaert

et al., 2003); protein structure analysis in computational biology (Taylor, 2002; Wang et al.,

2004); and learning to rank a set of items for information retrieval tasks (Dwork et al., 2001; Le

and Smola, 2007). Thus, learning appropriate weights ψi(·) for bipartite graph matchings is a

key problem for many application areas.

4.2.2 Performance Evaluation and Fisher Consistency

Given a predicted permutation, π′, and the “ground truth” permutation, π, the Ham-

ming loss counts the number of mistaken pairings: lossHam(π, π′) =
∑n

i=1 1(π′i 6= πi), where

1(·) = 1 if · is true and 0 otherwise. When the “ground truth” is a distribution over permu-

tations, P (π), rather than a single permutation, the (set of) Bayes optimal prediction(s) is:

argminπ′
∑

π P (π) lossHam(π, π′). For a predictor to be Fisher consistent, it must provide

a Bayes optimal prediction for any possible distribution P (π) when trained from that exact

distribution using the predictor’s most general possible parameterization (e.g., all measurable

functions ψ for potential-based models).

4.2.3 Exponential Family Random Field Approach

A probabilistic approach to learning bipartite graphs uses an exponential family distribu-

tion over permutations, Pψ(π) = e
∑n
i=1 ψi(πi)/Zψ, trained by maximizing training data like-

lihood. This provides certain statistical consistency guarantees for its marginal probabil-

ity estimates (Petterson et al., 2009). Specifically, if the potentials ψ are chosen from the



120

space of all measurable functions to maximize the likelihood of the true distribution of per-

mutations P (π), then Pψ(π) will match the marginal probabilities of the true distribution:

∀i, j, Pψ(πi = j) = P (πi = j). This implies Fisher consistency because the MAP estimate

under this distribution, which can be obtained as a maximum weighted bipartite matching, is

Bayes optimal.

The key challenge with this approach is its computational complexity. The normalization

term, Zψ, is the permanent of a matrix defined in terms of exponentiated potential terms:

Zψ =
∑

π

∏n
i=1 e

ψi(πi) = perm(M) where Mi,j = eψi(j). For sets of small size (e.g., n = 5),

enumerating the permutations is tractable and learning using the exponential random field

model incurs a run-time cost that is acceptable in practice (Petterson et al., 2009). However,

the matrix permanent computation is a #P-hard problem to compute exactly (Valiant, 1979).

Monte Carlo sampling approaches are used instead of permutation enumeration to maximize the

data likelihood (Petterson et al., 2009; Volkovs and Zemel, 2012). Though exact samples can be

generated efficiently in polynomial time (Huber and Law, 2008), the number of samples needed

for reliable likelihood or gradient estimates makes this approach infeasible for applications with

even modestly-sized sets of n = 20 elements (Petterson et al., 2009).

In some applications such as word alignment, exponential family random field models that

relax the permutation constraints in the label to the set of standard multiclass classifications

(i.e., a class label can appear more than once in the prediction) were proposed to avoid the

intractability of the normalization term computation (Blunsom and Cohn, 2006). In this case,
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the model reduces to the standard linear chain conditional random fields (CRF) model (refer

to Chapter 3 for a more discussion about the CRF).

4.2.4 Maximum Margin Approach

Maximum margin methods for structured prediction seek potentials ψ that minimize the

training sample hinge loss:

min
ψ

Eπ∼P̃

[
max
π′

{
loss(π, π′) + ψ(π′)

}
− ψ(π)

]
, (4.1)

where P̃ is the empirical distribution. Finding the optimal ψ is a convex optimization problem

(Boyd and Vandenberghe, 2004) that can generally be tractably solved using constraint gener-

ation methods as long as the maximizing assignments can be found efficiently. In the case of

permutation learning, finding the permutation π′ with highest hinge loss reduces to a maximum

weighted bipartite matching problem and can therefore be solved efficiently.

Though computationally efficient, maximum margin approaches for learning to make perfect

bipartite matches lack Fisher consistency, which requires the prediction π∗ = argmaxπ ψ(π)

resulting from Equation (4.1) to minimize the expected risk, Eπ∼P̃ [loss(π, π′)], for all dis-

tributions P̃ . We consider a distribution over permutations that is an extension of a coun-

terexample for multiclass classification consistency analysis with no majority label (Liu, 2007):

P (π = [1 2 3]) = 0.4;P (π = [2 3 1]) = 0.3; and P (π = [3 1 2]) = 0.3. The potential function

ψi(j) = 1 if i = j and 0 otherwise, provides a Bayes optimal permutation prediction for this

distribution and an expected hinge loss of 3.6 = 0.4(3− 3) + 0.3(3 + 3) + 0.3(3 + 3). However,
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the expected hinge loss is optimally minimized with a value of 3 when ψi(j) = 0, ∀i, j, which is

indifferent between all permutations and is not Bayes optimal. Thus, Fisher consistency is not

guaranteed.

4.3 Adversarial Bipartite Matching

To overcome the computational inefficiency of exponential random field methods and the

Fisher inconsistency of maximum margin methods, we formulate the task of learning for bi-

partite matching problems as an adversarial structured prediction task. We then present an

efficient approach for solving the resulting game over permutations.

4.3.1 Permutation Mixture Formulation

The training data for bipartite matching consists of triplets (A,B, π) where A and B are

two sets of nodes with equal size and π is the assignment. To simplify the notation, we denote

x as the bipartite graph containing the nodes A and B. We also denote φ(x, π) as a vector that

enumerates the joint feature representations based on the bipartite graph x and the matching

assignment π. This joint feature is defined additively over each node assignment, i.e., φ(x, π) =∑n
i=1 φi(x, πi).

Our approach seeks a predictor that robustly minimizes the Hamming loss against the

worst-case permutation mixture probability that is consistent with the statistics of the training

data. In this setting, a predictor makes a probabilistic prediction over the set of all possible

assignments (denoted as P̂ ). Instead of evaluating the predictor with the empirical distribution,

the predictor is pitted against an adversary that also makes a probabilistic prediction (denoted

as P̌ ). The predictor’s objective is to minimize the expected loss function calculated from the
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predictor’s and adversary’s probabilistic predictions, while the adversary seeks to maximize the

loss. The adversary (and only the adversary) is constrained to select a probabilistic prediction

that matches the statistical summaries of the empirical training distribution (denoted as P̃ ) via

moment matching constraints on joint features φ(x, π). Formally, we write our formulation as:

min
P̂ (π̂|x)

max
P̌ (π̌|x)

Ex∼P̃ ;π̂|x∼P̂ ;π̌|x∼P̌ [loss(π̂, π̌)] (4.2)

subject to: Ex∼P̃ ;π̌|x∼P̌

[
n∑
i=1

φi(x, π̌i)

]
= E(x,π)∼P̃

[
n∑
i=1

φi(x, πi)

]
.

Using the method of Lagrangian multipliers and strong duality for convex-concave sad-

dle point problems (Von Neumann and Morgenstern, 1945; Sion, 1958), The optimization in

Equation (4.2) can be equivalently solved in the dual formulation:

min
θ

Ex,π∼P̃ min
P̂ (π̂|x)

max
P̌ (π̌|x)

Eπ̂|x∼P̂
π̌|x∼P̌

[
loss(π̂, π̌) + θ ·

n∑
i=1

(φi(x, π̌i)− φi(x, πi))
]
, (4.3)
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where θ is the Lagrange dual variable for the moment matching constraints. Below is the

detailed step-by-step transformation from the primal mixture formulation of the adversarial

prediction task for bipartite matching (Equation (4.2)) to the dual formulation (Equation (4.3)):

min
P̂ (π̂|x)

max
P̌ (π̌|x)

Ex∼P̃ ;π̂|x∼P̂ ;π̌|x∼P̌ [loss(π̂, π̌)] (4.4)

subject to: Ex∼P̃ ;π̌|x∼P̌

[
n∑
i=1

φi(x, π̌i)

]
= E(x,π)∼P̃

[
n∑
i=1

φi(x, πi)

]

= max
P̌ (π̌|x)

min
P̂ (π̂|x)

Ex∼P̃ ;π̂|x∼P̂ ;π̌|x∼P̌ [loss(π̂, π̌)] (4.5)

subject to: Ex∼P̃ ;π̌|x∼P̌

[
n∑
i=1

φi(x, π̌i)

]
= E(x,π)∼P̃

[
n∑
i=1

φi(x, πi)

]

= max
P̌ (π̌|x)

min
θ

min
P̂ (π̂|x)

E(x,π)∼P̃ ;π̂|x∼P̂ ;π̌|x∼P̌

[
loss(π̂, π̌) + θT

(
n∑
i=1

φi(x, π̌i)−
n∑
i=1

φi(x, πi)

)]
(4.6)

= min
θ

max
P̌ (π̌|x)

min
P̂ (π̂|x)

E(x,π)∼P̃ ;π̂|x∼P̂ ;π̌|x∼P̌

[
loss(π̂, π̌) + θT

(
n∑
i=1

φi(x, π̌i)−
n∑
i=1

φi(x, πi)

)]
(4.7)

= min
θ

E(x,π)∼P̃ max
P̌ (π̌|x)

min
P̂ (π̂|x)

Eπ̂|x∼P̂ ;π̌|x∼P̌

[
loss(π̂, π̌) + θ ·

n∑
i=1

(φi(x, π̌i)− φi(x, πi))

]
(4.8)

= min
θ

E(x,π)∼P̃ min
P̂ (π̂|x)

max
P̌ (π̌|x)

Eπ̂|x∼P̂ ;π̌|x∼P̌

[
loss(π̂, π̌) + θ ·

n∑
i=1

(φi(x, π̌i)− φi(x, πi))

]
. (4.9)

The transformation steps above follow the similar transformations in the multiclass classification

case, i.e. in the proof of Theorem 2.1.

We use the Hamming distance, loss(π̂, π̌) =
∑n

i=1 1(π̂i 6= π̌i), as the loss function. Table IX

shows the payoff matrix for the game of size n = 3 with 3! actions (permutations) for the

predictor player π̂ and for the adversarial approximation player π̌. Here, we define the difference
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between the Lagrangian potential of the adversary’s action and the ground truth permutation

as δπ̌ = ψ(π̌)− ψ(π) = θ ·
∑n

i=1 (φi(x, π̌i)− φi(x, πi)) .

TABLE IX. Augmented Hamming loss matrix for n=3 permutations.

π̌ = 123 π̌ = 132 π̌ = 213 π̌ = 231 π̌ = 312 π̌ = 321

π̂=123 0 + δ123 2 + δ132 2 + δ213 3 + δ231 3 + δ312 2 + δ321

π̂=132 2 + δ123 0 + δ132 3 + δ213 2 + δ231 2 + δ312 3 + δ321

π̂=213 2 + δ123 3 + δ132 0 + δ213 2 + δ231 2 + δ312 3 + δ321

π̂=231 3 + δ123 2 + δ132 2 + δ213 0 + δ231 3 + δ312 2 + δ321

π̂=312 3 + δ123 2 + δ132 2 + δ213 3 + δ231 0 + δ312 2 + δ321

π̂=321 2 + δ123 3 + δ132 3 + δ213 2 + δ231 2 + δ312 0 + δ321

Unfortunately, the number of permutations, π, grows factorially (O(n!)) with the number

of elements being matched (n). This makes explicit construction of the Lagrangian minimax

game intractable for even modestly-sized problems.

4.3.2 Marginal Distribution Formulation

Our approach avoids the need of computing the factorially many permutations in solving the

adversarial bipartite matching game by leveraging the key insight that all quantities of interest

for evaluating the loss and satisfying the constraints depend only on marginal probabilities
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of the permutation’s value assignments. Based on this, we employ a marginal distribution

decomposition of the game.

We begin this reformulation by first defining a matrix representation of permutation π as

Y(π) ∈ Rn×n (or simply Y) where the value of its cell Yi,j is 1 when πi = j and 0 otherwise.

To be a valid complete bipartite matching or permutation, each column and row of Y can

only have one entry of 1. For each feature function φ
(k)
i (x, πi), we also denote its matrix

representation as Xk whose (i, j)-th cell represents the k-th entry of φi(x, j). For a given

distribution of permutations, P (π), we denote the marginal probabilities of matching i with j

as pi,j , P (πi = j). We let P =
∑

π P (π)Y(π) be the predictor’s marginal probability matrix

where its (i, j) cell represents P̂ (π̂i = j), and similarly let Q be the adversary’s marginal

probability matrix (based on P̌ ), as shown in Table X.

TABLE X. Doubly stochastic matrices P and Q for the marginal decompositions of each player’s
mixture of permutations.

1 2 3

π̂1 p1,1 p1,2 p1,3

π̂2 p2,1 p2,2 p2,3

π̂3 p3,1 p3,2 p3,3

1 2 3

π̌1 q1,1 q1,2 q1,3

π̌2 q2,1 q2,2 q2,3

π̌3 q3,1 q3,2 q3,3

The Birkhoff–von Neumann theorem (Birkhoff, 1946; Von Neumann, 1953) states that the

convex hull of the set of n×n permutation matrices forms a convex polytope in Rn2
(known as
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the Birkhoff polytope Bn) in which points are doubly stochastic matrices, i.e., the n×n matrices

with non-negative elements where each row and column must sum to one. This implies that

both marginal probability matrices P and Q are doubly stochastic matrices. In contrast to

the space of distributions over permutation of n objects, which grows factorially (O(n!) with

n!−1 free parameters), the size of this marginal matrices grows only quadratically (O(n2) with

n2 − 2n free parameters). This provides a significant benefit in terms of the optimization.

Starting with the minimax over P̂ (π̂) and P̌ (π̌) in the permutation mixture formulation,

and using the matrix notation above, we rewrite Equation (4.3) as a minimax over marginal

probability matrices P and Q with additional constraints that both P and Q are doubly-

stochastic matrices, i.e., P ≥ 0 (elementwise), Q ≥ 0, P1 = P>1 = Q1 = Q>1 = 1 where

1 = (1, . . . , 1)>). That is:

min
θ

EX,Y∼P̃ min
P≥0

max
Q≥0

[n−〈P,Q〉+〈Q−Y,
∑

k θkXk〉] (4.10)

subject to: P1 = P>1 = Q1 = Q>1 = 1,

where 〈·, ·〉 denotes the Frobenius inner product between two matrices, i.e., 〈A,B〉 =
∑

i,j Ai,jBi,j .

4.3.2.1 Optimization

We reduce the computational costs of the optimization in Equation (4.10) by focusing

on optimizing the adversary’s marginal probability Q. By strong duality, we then push the

maximization over Q in the formulation above to the outermost level of Eq. Equation (4.10).

Note that the objective above is a non-smooth function (i.e., piece-wise linear). For the purpose
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of smoothing the objective, we add a small amount of strongly convex prox-functions to both P

and Q. We also add a regularization penalty to the parameter θ to improve the generalizability

of our model. We unfold Equation (4.10) by replacing the empirical expectation with an average

over all training examples, resulting in the following optimization:

max
Q≥0

min
θ

1

m

m∑
i=1

min
Pi≥0

[
〈Qi −Yi,

∑
k θkXi,k〉 − 〈Pi,Qi〉+ µ

2‖Pi‖2F −
µ
2‖Qi‖2F

]
+ λ

2‖θ‖
2
2 (4.11)

subject to: Pi1 = P>i 1 = Qi1 = Q>i 1 = 1, ∀i,

where m is the number of bipartite matching problems in the training set, λ is the regularization

penalty parameter, µ is the smoothing penalty parameter, and ‖A‖F denotes the Frobenius

norm of matrix A. The subscript i in Pi,Qi,Xi, and Yi refers to the i-th example in the

training set.

In the formulation above, given a fixed Q, the inner minimization over θ and P can then

be solved separately. The optimal θ in the inner minimization admits a closed-form solution,

in which the k-th element of θ∗ is:

θ∗k = − 1

λm

m∑
i=1

〈Qi −Yi,Xi,k〉 . (4.12)



129

The inner minimization over P can be solved independently for each training example.

Given the adversary’s marginal probability matrix Qi for the i-th example, the optimal Pi can

be formulated as:

P∗i = argmin
{Pi≥0|Pi1=P>i 1=1}

µ
2‖Pi‖2F − 〈Pi,Qi〉 (4.13)

= argmin
{Pi≥0|Pi1=P>i 1=1}

‖Pi − 1
µQi‖2F . (4.14)

We can interpret this minimization as projecting the matrix 1
µQi to the set of doubly-stochastic

matrices. We will discuss our projection technique in the upcoming subsection.

For solving the outer optimization over Q with the doubly-stochastic constraints, we employ

a projected Quasi-Newton algorithm (Schmidt et al., 2009). Each iteration of the algorithm

optimizes the quadratic approximation of the objective function (using limited-memory Quasi-

Newton) over the the convex set. In each update step, a projection to the set of doubly-

stochastic matrices is needed, akin to the inner minimization of P in Equation (4.14).

The optimization above provides the adversary’s optimal marginal probability Q∗. To

achieve our learning goal, we recover θ∗ using Equation (4.12) computed over the optimal Q∗.

We use the θ∗ that our model learns from this optimization to construct a weighted bipartite

graph for making predictions for test examples.
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4.3.2.2 Doubly-Stochastic Matrix Projection

The projection from an arbitrary matrix R to the set of doubly-stochastic matrices can be

formulated as:

min
P≥0
‖P−R‖2F , subject to: P1 = P>1 = 1. (4.15)

We employ the alternating direction method of multipliers (ADMM) technique (Douglas and

Rachford, 1956; Glowinski and Marroco, 1975; Boyd et al., 2011) to solve the optimization

problem above. We divide the doubly-stochastic matrix constraint into two sets of constraints

C1 : P1 = 1 and P ≥ 0, and C2 : P>1 = 1 and P ≥ 0. Using this construction, we convert the

optimization above into ADMM form as follows:

min
P,S

1
2‖P−R‖2F + 1

2‖S−R‖2F + IC1(P) + IC2(S) (4.16)

subject to: P− S = 0.

The augmented Lagrangian for this optimization is:

Lρ(P,S,W) =1
2‖P−R‖2F + 1

2‖S−R‖2F + IC1(P) + IC2(S) + ρ
2‖P− S + W‖2F , (4.17)
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where ρ is the ADMM penalty parameter and W is the scaled dual variable. From the aug-

mented Lagrangian, we compute the update for P as:

Pt+1 = argmin
P

Lρ(P,St,Wt) (4.18)

= argmin
{P≥0|P1=1}

1
2‖P−R‖2F + ρ

2‖P− St + Wt‖2F (4.19)

= argmin
{P≥0|P1=1}

‖P− 1
1+ρ

(
R + ρ

(
St −Wt

))
‖2F . (4.20)

The minimization above can be interpreted as a projection to the set {P ≥ 0|P1 = 1} which

can be realized by projecting to the probability simplex independently for each row of the

matrix 1
1+ρ

(
R + ρ

(
St −Wt

))
. Similarly, the ADMM update for S can also be formulated

as a column-wise probability simplex projection. The technique for projecting a point to the

probability simplex has been studied previously, e.g., by (Duchi et al., 2008). Therefore, our

ADMM algorithm consists of the following updates:

Pt+1 = ProjC1

(
1

1+ρ

(
R + ρ

(
St −Wt

)))
(4.21)

St+1 = ProjC2

(
1

1+ρ

(
R + ρ

(
Pt+1 + Wt

)))
(4.22)

Wt+1 = Wt + Pt+1 − St+1. (4.23)

We run this series of updates until the stopping conditions are met. Our stopping conditions

are based on the primal and dual residual optimality as described in (Boyd et al., 2011). In our

overall algorithm, this ADMM projection algorithm is used both in the projected Quasi-Newton
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algorithm for optimizing Q (Equation (4.11)) and in the inner optimization for minimizing Pi

(Equation (4.14)).

4.3.2.3 Convergence Property

The convergence rate of ADMM is O(log 1
ε ) thanks to the strong convexity of the objective

(Deng and Yin, 2016). Each step inside ADMM is simply a projection to a simplex, hence

costing Õ(n) computations (Duchi et al., 2008).

In terms of optimization on Q, since no explicit rates of convergence are available for the

projected Quasi-Newton algorithm (Schmidt et al., 2009) that finely characterize the depen-

dency on the condition numbers, we simply illustrate the
√
L/µ log 1

ε rate using Nesterov’s

accelerated gradient algorithm (Nesterov, 2003), where L is the Lipschitz continuous constant

of the gradient. In our case, L = 1
m2λ

∑
k

∑m
i=1 ‖Xi,k‖2F + 1/µ.

Comparison with Structured SVM (SSVM). Conventional SSVMs for learning bipar-

tite matchings have only O(1/ε) rates due to the lack of smoothness (Joachims et al., 2009; Teo

et al., 2010). If smoothing is added, then similar linear convergence rates can be achieved with

similar condition numbers. However, it is noteworthy that at each iteration we need to apply

ADMM to solve a projection problem to the doubly stochastic matrix set (Equation (4.15)),

while SSVMs (without smoothing) solves a matching problem with the Hungarian algorithm,

incurring O(n3) time.
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4.3.3 Fisher Consistency Analysis

Despite its apparent differences from standard empirical risk minimization (ERM), adver-

sarial loss minimization (Equation (4.3)) can be equivalently recast as an ERM:

min
θ

E x∼P
π|x∼P̃

[
ALperm

fθ
(x, π)

]
where ALperm

fθ
(x, π) , (4.24)

min
P̂ (π̂|x)

max
P̌ (π̌|x)

Eπ̂|x∼P̂
π̌|x∼P̌

[
loss(π̂, π̌) + fθ(x, π̌)− fθ(x, π)

]

and fθ(x, π) = θ ·
∑n

i=1 φ(x, πi) is the Lagrangian potential function. Here we consider fθ

as the linear discriminant function for a proposed permutation π, using parameter value θ.

ALperm
fθ

(x, π) is then the surrogate loss for input x and permutation π.

As described in Section 4.2.2, Fisher consistency is an important property for a surrogate

loss L. It requires that under the true distribution P (x, π), the hypothesis that minimizes L is

Bayes optimal (Tewari and Bartlett, 2007; Liu, 2007). In our setting, the Fisher consistency of

ALperm
f can be written as:

f∗ ∈ F∗ , argmin
f

Eπ|x∼P
[
ALperm

f (x, π)
]

(4.25)

⇒ argmax
π

f∗(x, π) ⊆ Π� , argmin
π

Eπ̄|x∼P [loss(π, π̄)].

Note that in Equation (4.25) we allow f to be optimized over the set of all measurable

functions on the input space (x, π). In our formulation, we have restricted f to be additively

decomposable over individual elements of permutation, f(x, π) =
∑

i gi(x, πi). In the sequel, we
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will show that the condition in Equation (4.25) also holds for this restricted set provided that

g is allowed to be optimized over the set of all measurable functions on the space of individual

input (x, πi).

Theorem 4.1. Suppose we have a loss metric that satisfy the natural requirement of loss(π, π) <

loss(π̄, π) for all π̄ 6= π. Then the adversarial permutation loss ALperm
f is Fisher consistent if

f is over all measurable functions on the input space (x, π).

Proof. Given that f is optimized over all measurable functions on the input space (x, π), the

minimization in Equation (4.25) is equivalent with the case of multiclass classification where

the number of class is n!, comprises of all possible permutations. Based on our analysis in

Section 2.6.1, ALperm
f is Fisher consistent in this case.

Theorem 4.2. Suppose the loss is Hamming loss, and the potential function f(x, π) decomposes

additively by
∑

i gi(x, πi). Then, the adversarial permutation loss ALperm
f is Fisher consistent

provided that gi is allowed to be optimized over the set of all measurable functions on the space

of individual inputs (x, πi).

Proof. Simply choose gi such that for each sample x in the population, gi(x, πi) = −(πi 6= π�i ).

This renders the loss reflective property under the Hamming loss.

4.4 Experimental Evaluation

To evaluate our approach, we apply our adversarial bipartite matching model to video

tracking tasks using public benchmark datasets (Leal-Taixé et al., 2015). In this problem, we

are given a set of images (video frames) and a list of objects in each image. We are also given the
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correspondence matching between objects in frame t and objects in frame t+1. Figure 14 shows

an example of the problem setup. It is important to note that the number of objects are not the

same in every frame. Some of the objects may enter, leave, or remain in the consecutive frames.

To handle this issue, we setup our experiment as follows. Let kt be the number of objects in

frame t and k∗ be the maximum number of objects a frame can have, i.e., k∗ = maxt∈T kt.

Starting from k∗ nodes to represent the objects, we add k∗ more nodes as “invisible” nodes to

allow new objects to enter and existing objects to leave. As a result, the total number of nodes

in each frame doubles to n = 2k∗.

Figure 14. An example of bipartite matching in video tracking.
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4.4.1 Feature Representation

We define the features for pairs of bounding boxes (i.e., φi(x, j) for pairing bounding box i

with bounding box j) in two consecutive video frames so that we can compute the associative

feature vectors, φ(x, π) =
∑n

i=1 φi(x, πi), for each possible matching π. To define the feature

vector φi(·, ·), we follow the feature representation reported by (Kim et al., 2012) using six

different types of features: (1) intersection over union (IoU) overlap ratio between bounding

boxes, (2) Euclidean distance between object centers, (3) 21 color histogram distance features

(RGB) from the Bhattacharyaa distance, (4) 21 local binary pattern (LBP) features, (5) optical

flow (motion) between bounding boxes, and (6) three indicator variables (for entering, leaving,

and staying invisible).

4.4.2 Experimental Setup

We compare our approach with the Structured SVM (SSVM) model (Taskar et al., 2005a;

Tsochantaridis et al., 2005) implemented based on (Kim et al., 2012) using SVM-Struct (Joachims,

2008; Vedaldi, 2011). We implement our optimization algorithm using minConf (Schmidt, 2008)

for performing projected Quasi-Newton optimization.

We consider two different groups of datasets in our experiment: TUD datasets and ETH

datasets. Each dataset contains different numbers of elements (i.e., the number of pedestrian

bounding box in the frame plus the number of extra nodes to indicate entering or leaving) and

different numbers of examples (i.e., pairs of two consecutive frames that we want to match).

Table XI contains the detailed information about the datasets.
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TABLE XI. Dataset properties

Dataset # Elements # Examples

TUD-Campus 12 70
TUD-Stadtmitte 16 178
ETH-Sunnyday 18 353
ETH-Bahnhof 34 999
ETH-Pedcross2 30 836

To avoid having test examples that are too similar with the training set, we train the

models on one dataset and test the model on another dataset that has similar characteristics.

In particular, we perform evaluations for every pair of datasets in TUD and ETH collections.

This results in eight pairs of training/test datasets, as shown in Table XII.

To tune the regularization parameter (λ in adversarial matching, and C in SSVM), we per-

form 5-fold cross validation based on the training dataset only. The resulting best regularization

parameter is used to train the model over all training examples to obtain parameters θ, which

we then use to predict the matching for the testing data. For both SSVM and our method, the

prediction is done by finding the bipartite matching that maximizes the potential value, i.e.,

argmaxY 〈Y,
∑

k θkXk〉 which can be solved using the Hungarian algorithm.

4.4.3 Results

We report the average accuracy, which in this case is defined as (1 − the average Hamming

loss) over all examples in the testing dataset. Table XII shows the mean and the standard

deviation of our metric across different dataset pairs. We highlight (using bold font) the cases
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in which our result is better with statistical significance (under Wilcoxon signed-rank test with

α = 0.05) in Table XII. Compared with SSVM, our proposed adversarial matching outperforms

SSVM in all pairs of datasets—with statistical significance on all six pairs of the ETH datasets

and slightly better than SSVM on the TUD datasets. This suggests that our adversarial bipar-

tite matching model benefits from its Fisher consistency property.

TABLE XII. The mean and standard deviation (in parenthesis) of the average accuracy (1 -
the average Hamming loss) for the adversarial bipartite matching model compared with the
structured-SVM.

Training / Testing Adv. Marginal SSVM

Campus / Stadtmitte 0.662 (0.08) 0.662 (0.08)
Stadtmitte / Campus 0.667 (0.11) 0.660 (0.12)
Bahnhof / Sunnyday 0.754 (0.10) 0.729 (0.15)
Pedcross2 / Sunnyday 0.750 (0.10) 0.736 (0.13)
Sunnyday/ Bahnhof 0.751 (0.18) 0.739 (0.20)
Pedcross2 / Bahnhof 0.763 (0.16) 0.731 (0.21)
Bahnhof / Pedcross2 0.714 (0.16) 0.701 (0.18)
Sunnyday / Pedcross2 0.712 (0.17) 0.700 (0.18)

In terms of the running time, Table XIII shows that our marginal formulation is relatively

fast. It only takes a few seconds to train until convergence in the case of 50 examples, with

the number of elements varied up to 34. The running time grows roughly quadratically in the

number of elements, which is natural since the size of the marginal probability matrices P and
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TABLE XIII. Running time (in seconds) of the model for various number of elements n with
fixed number of samples (m = 50)

Dataset # Elements Adv. Marginal SSVM

Campus 12 1.96 0.22
Stadtmitte 16 2.46 0.25
Sunnyday 18 2.75 0.15
Pedcross2 30 8.18 0.26
Bahnhof 34 9.79 0.31

Q also grow quadratically in the number of elements. This shows that our approach is much

more efficient than the CRF approach, which has a running time that is impractical even for

small problems with 20 elements. The training time of SSVM is faster than the adversarial

methods due to two different factors: (1) the inner optimization of SSVM can be solved using a

single execution of the Hungarian algorithm compared with the inner optimization of adversarial

method which requires ADMM optimization for projection to doubly stochastic matrix set; (2)

different tools for implementation, i.e., C++ for SSVM and MATLAB for our method, which

benefits the running time of SSVM.

4.5 Conclusions and Future Works

We have presented an adversarial approach for learning bipartite matchings that is not

only computationally efficient to employ but also provides Fisher consistency guarantees. We

showed that these theoretical advantages translate into better empirical performance for our
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model compared with previous approaches. Our future work will explore matching problems

with different loss functions and other graphical structures.



CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Conclusions

This thesis proposed a family of learning algorithms that combine the strengths of proba-

bilistic learning approach in its statistical guarantee of Fisher consistency, with the strengths of

large-margin approach in its flexibility to align with custom performance/loss metrics and its

computational efficiency. This also avoids the main drawbacks of the probabilistic and large-

margin approaches. Our proposed methods find a predictor that maximize the performance

metric (or minimize the loss metric) in the worst case given the statistical summaries of the

empirical distributions. We presented the formulations, theoretical properties, optimization

algorithms, and practical benefits of our learning algorithms in two different areas, general

multiclass classification and structured prediction.

In the general multiclass classification problems, our formulation can be viewed as surrogate

losses over the desired loss metrics. We presented efficient algorithms to compute the surrogate

loss and proved their Fisher consistency property. We designed efficient learning algorithms

and also a way to incorporate richer features via the kernel trick. We then demonstrated the

benefit of our approach compared with the state-of-the-art piece-wise linear surrogate losses

which includes many different forms of multiclass SVMs and their extension to many general

multiclass classification problems.
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In the structured prediction area, we focused on two important problems: graphical models

and bipartite matching. Our proposed models provide the flexibility of incorporating custom

loss/performance metric in their learning process, the statistical guarantee of Fisher consistency,

and the computational efficiency by optimizing over the marginal distributions of each model.

This benefits many application problems where aligning the learning algorithms with custom

loss metrics is desirable, for example in many natural language and computer vision tasks.

5.2 Future Directions

There are several possible future directions that can be explored by leveraging the proposed

methods in this thesis. Among those directions are: fairness in machine learning, structured

performance/loss metrics, and more general structures in graphical models.

Fairness in Machine Learning

As there are growing numbers of machine learning applications in automated decisions that

can impact people’s lives, the need to build learning algorithms that ensure fairness among

the users is also growing. This requires machine learning predictors to produce fair predic-

tions (Hardt et al., 2016; Zafar et al., 2017; Dwork et al., 2012). From the perspective of our

adversarial formulation, we currently only enforce constraints on the adversary to match the

statistics of the data. Fairness constraints can be added to the model by also constraining the

predictor to output fair prediction.

Structured Performance/Loss Metrics

For many standard classification problems, even though the problem itself is not a structured

prediction problem, i.e., only predict single variable y for given x, the performance metric in
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which the prediction is evaluated has some structure. Some examples of the desired structured

performance metrics are precision, recall, Fβ-score, Jaccard score, and ROC-area. A possible

research direction can be explored to develop a plug-in classifier for these performance metrics

that enjoys Fisher consistency based on the robust adversarial formulation. This will provide

a Fisher consistent alternative to the SVMperf algorithm (Joachims, 2005). Previous works

(Wang et al., 2015; Shi et al., 2017) have investigated the problem for certain performance

metrics, but these approaches require significant modifications (in some cases, rewriting the

whole algorithm) when different metrics are used.

Structured Prediction and Graphical Models

The extension of the Adversarial Graphical Models (AGM) to more complex graphical

structures and more general performance/loss metrics is also an interesting future direction.

While this thesis focused on graphical structures that admit tractable optimization, the case

where exact learning and inference are intractable need to be further investigated. This case

includes more complex lattice-based graphical structures which are popular in computer vision

applications, and more generally, graphical structures with loops.
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The Neural Information Processing Systems conference’s acronym changed from

NIPS to NeurIPS in 2018.

All NIPS/NeurIPS authors retain copyright of their work. You will need to sign a

nonexclusive license giving the NIPS/NeurIPS foundation permission to publish the

work. Ultimately, however, you can do whatever you like with the content, including

having the paper as a chapter of your thesis.

A.2 Copyright Policy of the International Conference on Machine Learning
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is published by the Proceedings of Machine Learning Research (PMLR).
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copies), but PMLR will not produce hardcopies of these volumes.

A.3 Copyright Policy of ArXiv

Our paper (Fathony et al., 2018c) is published in arXiv with the “non-exclusive and

irrevocable license”.

ArXiv does not ask that copyright be transferred. However, we require sufficient

rights to allow us to distribute submitted articles in perpetuity. In order to submit

an article to arXiv, the submitter must either:

• grant arXiv.org a non-exclusive and irrevocable license to distribute the article,

and certify that he/she has the right to grant this license;

• certify that the work is available under one of the following Creative Commons

licenses and that he/she has the right to assign this license:

– Creative Commons Attribution license (CC BY 4.0)

– Creative Commons Attribution-ShareAlike license (CC BY-SA 4.0)

– Creative Commons Attribution-Noncommercial-ShareAlike license (CC BY-

NC-SA 4.0);
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mons Public Domain Dedication (CC0 1.0) with the submission.

In the most common case, authors have the right to grant these licenses because

they hold copyright in their own work.
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Andréasson, N., Evgrafov, A., Patriksson, M., Gustavsson, E., and Önnheim, M.: An
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